IDEAS home Printed from https://ideas.repec.org/p/exe/wpaper/1001.html
   My bibliography  Save this paper

Where strategic and evolutionary stability depart - a study of minimal diversity games

Author

Listed:
  • Dieter Balkenborg

    (Department of Economics, University of Exeter)

  • Stefano Demichelis

    (Department of Mathematics, University of Pavia)

  • Dries Vermeulen

    (Department of Quantitative Economics, University Maastricht)

Abstract

A minimal diversity game is an n player strategic form game in which each player has m pure strategies at his disposal. The payoff to each player is always 1, unless all players select the same pure strategy, in which case all players receive zero payoff. Such a game has a unique isolated completely mixed Nash equilibrium in which each player plays each strategy with equal probability, and a connected component of Nash equilibria consisting of those strategy profiles in which each player receives payoff 1. The Pareto superior component is shown to be asymptotically stable under a wide class of evolutionary dynamics, while the isolated equilibrium is not. On the other hand, the isolated equilibrium is strategically stable, while the strategic stability of the Pareto efficient component depends on the dimension of the component, and hence on the number of players, and the number of pure strategies.

Suggested Citation

  • Dieter Balkenborg & Stefano Demichelis & Dries Vermeulen, 2010. "Where strategic and evolutionary stability depart - a study of minimal diversity games," Discussion Papers 1001, University of Exeter, Department of Economics.
  • Handle: RePEc:exe:wpaper:1001
    as

    Download full text from publisher

    File URL: https://exetereconomics.github.io/RePEc/dpapers/DP1001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, April.
    2. Guth, Werner & Huck, Steffen & Muller, Wieland, 2001. "The Relevance of Equal Splits in Ultimatum Games," Games and Economic Behavior, Elsevier, vol. 37(1), pages 161-169, October.
    3. DeMichelis, Stefano & Germano, Fabrizio, 2000. "On the Indices of Zeros of Nash Fields," Journal of Economic Theory, Elsevier, vol. 94(2), pages 192-217, October.
    4. Jean-François Mertens, 1989. "Stable Equilibria---A Reformulation," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 575-625, November.
    5. Sergiu Hart, 2008. "Discrete Colonel Blotto and General Lotto games," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 441-460, March.
    6. Ritzberger, Klaus, 1994. "The Theory of Normal Form Games form the Differentiable Viewpoint," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 207-236.
    7. Swinkels Jeroen M., 1993. "Adjustment Dynamics and Rational Play in Games," Games and Economic Behavior, Elsevier, vol. 5(3), pages 455-484, July.
    8. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    9. John Hillas & Mathijs Jansen & Jos Potters & Dries Vermeulen, 2001. "On the Relation Among Some Definitions of Strategic Stability," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 611-635, August.
    10. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    11. Balkenborg, Dieter & Schlag, Karl H., 2007. "On the evolutionary selection of sets of Nash equilibria," Journal of Economic Theory, Elsevier, vol. 133(1), pages 295-315, March.
    12. MERTENS, Jean-François, 1991. "Stable equilibria - a reformulation. Part II. Discussion of the definition, and further results," LIDAM Reprints CORE 960, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Man, Priscilla T.Y., 2012. "Efficiency and stochastic stability in normal form games," Games and Economic Behavior, Elsevier, vol. 76(1), pages 272-284.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dieter Balkenborg & Dries Vermeulen, 2016. "Where Strategic and Evolutionary Stability Depart—A Study of Minimal Diversity Games," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 278-292, February.
    2. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    3. Stefano Demichelis & Klaus Ritzberger & Jeroen M. Swinkels, 2004. "The simple geometry of perfect information games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(3), pages 315-338, June.
    4. Demichelis, Stefano & Germano, Fabrizio, 2002. "On (un)knots and dynamics in games," Games and Economic Behavior, Elsevier, vol. 41(1), pages 46-60, October.
    5. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    6. Norman, Thomas W.L., 2018. "Inefficient stage Nash is not stable," Journal of Economic Theory, Elsevier, vol. 178(C), pages 275-293.
    7. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
    8. Geir B. Asheim & Mark Voorneveld & Jörgen W. Weibull, 2016. "Epistemically Robust Strategy Subsets," Games, MDPI, vol. 7(4), pages 1-16, November.
    9. Pahl, Lucas, 2023. "Polytope-form games and index/degree theories for extensive-form games," Games and Economic Behavior, Elsevier, vol. 141(C), pages 444-471.
    10. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2015. "The refined best-response correspondence in normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 165-193, February.
    11. Peter Wikman, 2022. "Nash blocks," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 29-51, March.
    12. Srihari Govindan & Robert Wilson, 2008. "Metastable Equilibria," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 787-820, November.
    13. Govindan, Srihari & Laraki, Rida & Pahl, Lucas, 2023. "On sustainable equilibria," Journal of Economic Theory, Elsevier, vol. 213(C).
    14. DeMichelis, Stefano & Germano, Fabrizio, 2000. "On the Indices of Zeros of Nash Fields," Journal of Economic Theory, Elsevier, vol. 94(2), pages 192-217, October.
    15. Balkenborg, Dieter & Vermeulen, Dries, 2014. "Universality of Nash components," Games and Economic Behavior, Elsevier, vol. 86(C), pages 67-76.
    16. Balkenborg, Dieter & Vermeulen, Dries, 2019. "On the topology of the set of Nash equilibria," Games and Economic Behavior, Elsevier, vol. 118(C), pages 1-6.
    17. Govindan, Srihari & Wilson, Robert B., 2007. "Stable Outcomes of Generic Games in Extensive Form," Research Papers 1933r, Stanford University, Graduate School of Business.
    18. Lucas Pahl, 2022. "Polytope-form games and Index/Degree Theories for Extensive-form games," Papers 2201.02098, arXiv.org, revised Jul 2023.
    19. Dieter Balkenborg & Rosemarie Nagel, 2016. "An Experiment on Forward vs. Backward Induction: How Fairness and Level k Reasoning Matter," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 378-408, August.
    20. Bajoori, Elnaz & Flesch, János & Vermeulen, Dries, 2016. "Behavioral perfect equilibrium in Bayesian games," Games and Economic Behavior, Elsevier, vol. 98(C), pages 78-109.

    More about this item

    Keywords

    Strategic form games; strategic stability; evolutionary stability;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exe:wpaper:1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sebastian Kripfganz (email available below). General contact details of provider: https://edirc.repec.org/data/deexeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.