IDEAS home Printed from https://ideas.repec.org/p/eth/wpswif/19-310.html
   My bibliography  Save this paper

Buffering Volatility: Storage Investments and Technology-Specific Renewable Energy Support

Author

Listed:
  • Jan Abrell

    (ETH Zurich, Switzerland)

  • Sebastian Rausch

    (ETH Zurich, Switzerland)

  • Clemens Streitberger

    (ETH Zurich, Switzerland)

Abstract

Mitigating climate change will require integrating large amounts of highly intermittent renewable energy (RE) sources in future electricity markets. Considerable uncertainties exist about the cost and availability of future large-scale storage to alleviate the potential mismatch between demand and supply. This paper examines the suitability of regulatory (public policy) mechanisms for coping with the volatility induced by intermittent RE sources, using a numerical equilibrium model of a future wholesale electricity market. We find that the optimal RE subsidies are technology-specific reflecting the heterogeneous value for system integration. Differentiated RE subsidies reduce the curtailment of excess production, thereby preventing costly investments in energy storage. Using a simple cost-benefit framework, we show that a “smart” design of RE support policies significantly reduces the level of optimal storage. We further find that the marginal benefits of storage rapidly decrease for short-term (intra-day) storage and are small for long-term (seasonal) storage independent of the storage level. This suggests that storage is not likely to be the limiting factor for decarbonizing the electricity sector.

Suggested Citation

  • Jan Abrell & Sebastian Rausch & Clemens Streitberger, 2019. "Buffering Volatility: Storage Investments and Technology-Specific Renewable Energy Support," CER-ETH Economics working paper series 19/310, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  • Handle: RePEc:eth:wpswif:19-310
    as

    Download full text from publisher

    File URL: https://www.ethz.ch/content/dam/ethz/special-interest/mtec/cer-eth/cer-eth-dam/documents/working-papers/WP-19-310.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carsten Helm & Mathias Mier, 2018. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Pricing," Working Papers V-413-18, University of Oldenburg, Department of Economics, revised Oct 2018.
    2. Linn, Joshua & Shih, Jhih-Shyang, "undated". "Does Electricity Storage Innovation Reduce Greenhouse Gas Emissions?," RFF Working Paper Series dp-16-37, Resources for the Future.
    3. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    4. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    5. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," European Economic Review, Elsevier, vol. 108(C), pages 259-279.
    6. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    7. Wichsinee Wibulpolprasert, 2016. "Optimal Environmental Policies And Renewable Energy Investment: Evidence From The Texas Electricity Market," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-41, November.
    8. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    9. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    10. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    11. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    12. Crampes, Claude & Moreaux, Michel, 2010. "Pumped storage and cost saving," Energy Economics, Elsevier, vol. 32(2), pages 325-333, March.
    13. Newbery, D. G., 2016. "A simple introduction to the economics of storage: shifting demand and supply over time and space," Cambridge Working Papers in Economics 1661, Faculty of Economics, University of Cambridge.
    14. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    15. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    16. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Abrell & Mirjam Kosch, 2022. "The Impact of Carbon Prices on Renewable Energy Support," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(3), pages 531-563.
    2. Yu, Shiwei & Zhou, Shuangshuang & Chen, Nan, 2024. "Multi-objective optimization of capacity and technology selection for provincial energy storage in China: The effects of peak-shifting and valley-filling," Applied Energy, Elsevier, vol. 355(C).
    3. Jahani, Hamed & Gholizadeh, Hadi & Hayati, Zahra & Fazlollahtabar, Hamed, 2023. "Investment risk assessment of the biomass-to-energy supply chain using system dynamics," Renewable Energy, Elsevier, vol. 203(C), pages 554-567.
    4. Rodica Loisel & Corentin Simon, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Post-Print hal-04475995, HAL.
    5. Jan Abrell & Sebastian Rausch & Clemens Streitberger, 2022. "The Economic and Climate Value of Flexibility in Green Energy Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 289-312, October.
    6. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    7. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    8. de Miguel, Carlos & Filippini, Massimo & Labandeira, Xavier & Labeaga, José M. & Löschel, Andreas, 2019. "Low-carbon Transitions: Economics and Policy," Energy Economics, Elsevier, vol. 84(S1).
    9. Li, Longxi & Cao, Xilin, 2022. "Comprehensive effectiveness assessment of energy storage incentive mechanisms for PV-ESS projects based on compound real options," Energy, Elsevier, vol. 239(PA).
    10. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    11. Pierre, Cayet & Catherine, Azzaro-Pantel & Sylvain, Bourjade & Catherine, Muller-Vibes, 2024. "Beyond the “bottom-up” and “top-down” controversy: A methodological inquiry into hybrid modeling methods for hydrogen supply chains," International Journal of Production Economics, Elsevier, vol. 268(C).
    12. MURĂRAȘU Ioan Cătălin, 2023. "Analysis of the Volatility of Renewable Sources of Electricity in Romania and the Assessment of Their Capacity to Replace the Conventional Sources," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 01, March.
    13. Uddin, Gazi Salah & Luo, Tianqi & Yahya, Muhammad & Jayasekera, Ranadeva & Rahman, Md Lutfur & Okhrin, Yarema, 2023. "Risk network of global energy markets," Energy Economics, Elsevier, vol. 125(C).
    14. Yang, Changhui & Fu, Yuting & He, Lijun & Jiang, Qi & Cui, Yangyu, 2024. "Real options analysis for regional investment decisions of household PV-ESS in China," Energy, Elsevier, vol. 293(C).
    15. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Abrell & Sebastian Rausch & Clemens Streitberger, 2022. "The Economic and Climate Value of Flexibility in Green Energy Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 289-312, October.
    2. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    3. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    4. Helm, Carsten & Mier, Mathias, 2019. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Carbon Pricing," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203539, Verein für Socialpolitik / German Economic Association.
    5. Carsten Helm & Mathias Mier, 2018. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Pricing," Working Papers V-413-18, University of Oldenburg, Department of Economics, revised Oct 2018.
    6. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    7. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    8. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    9. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    11. Liebensteiner, Mario & Haxhimusa, Adhurim & Naumann, Fabian, 2023. "Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    12. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2020. "Economic analysis of batteries: Impact on security of electricity supply and renewable energy expansion in Germany," Applied Energy, Elsevier, vol. 275(C).
    13. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    14. Pommeret, Aude & Schubert, Katheline, 2022. "Optimal energy transition with variable and intermittent renewable electricity generation," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    15. Rausch, Sebastian & Yonezawa, Hidemichi, 2023. "Green technology policies versus carbon pricing: An intergenerational perspective," European Economic Review, Elsevier, vol. 154(C).
    16. Parlane, Sarah & Ryan, Lisa, 2020. "Optimal contracts for renewable electricity," Energy Economics, Elsevier, vol. 91(C).
    17. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    18. Bialek, Sylwia & Ünel, Burçin, 2022. "Efficiency in wholesale electricity markets: On the role of externalities and subsidies," Energy Economics, Elsevier, vol. 109(C).
    19. Li, Jianglong & Ho, Mun Sing, 2024. "End-year China wind power installation rush reduces electric system reliability," Energy Economics, Elsevier, vol. 133(C).
    20. Li, Haoyang & Lin, Wen, 2023. "Cheaper solar, cleaner grid?," Energy Economics, Elsevier, vol. 127(PB).

    More about this item

    Keywords

    Renewable Energy; Electricity; Volatility; Intermittency; Storage; Technology-specific Regulation; Subsidies; Energy Policy; Climate Policy;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eth:wpswif:19-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iwethch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.