IDEAS home Printed from https://ideas.repec.org/p/esr/wpaper/wp126.html
   My bibliography  Save this paper

Evaluating Programmes: Experiments, Non-Experiments and Propensity Scores

Author

Listed:
  • Denis Conniffe

    (Economic and Social Research Institute (ESRI))

  • Vanessa Gash

    (Economic and Social Research Institute (ESRI))

  • Philip J.

    (Economic and Social Research Institute (ESRI))

Abstract

Evaluations of programmes ?for example, labour market interventions such as employment schemes and training courses- usually involve comparison of the performance of a treatment group (recipients of the programme) with a control group (non-recipients) as regards some response (gaining employment for example). But the idea of randomisation of individuals to groups is rarely possible in the social sciences and there may be substantial differences between groups in the distribution of individual characteristics than can affect response. Past practice in economics has been to try to use multiple regression models to adjust away the differences in observed characteristics, while also testing for sample selection bias. The Propensity Score approach, which is widely applied in epidemiology and related fields, focuses on the idea that ?matching? individuals in the groups should be compared. The appropriate matching measure is usually taken to be the prior probability of programme participation. This paper describes the key ideas of the Propensity Score method, compares it with the common approach in economics, reviews the arguments in the literature and illustrates application by reanalysis of some Irish data on training courses.

Suggested Citation

  • Denis Conniffe & Vanessa Gash & Philip J., 2000. "Evaluating Programmes: Experiments, Non-Experiments and Propensity Scores," Papers WP126, Economic and Social Research Institute (ESRI).
  • Handle: RePEc:esr:wpaper:wp126
    as

    Download full text from publisher

    File URL: https://www.esri.ie/pubs/WP126.pdf
    File Function: First version, 2000
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    3. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    4. Breen, Richard & Halpin, B., 1988. "Self-Employment and the Unemployed," Research Series, Economic and Social Research Institute (ESRI), number GRS140.
    5. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-328, May.
    6. Breen, R. & Halpin, B., 1989. "Subsidising Jobs: An Evaluation of the Employment Incentive Scheme," Research Series, Economic and Social Research Institute (ESRI), number GRS144.
    7. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    8. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    9. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    10. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    11. Little, Roderick J A, 1985. "A Note about Models for Selectivity Bias," Econometrica, Econometric Society, vol. 53(6), pages 1469-1474, November.
    12. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    13. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    14. Breen, Richard, 1986. "Subject Availability and Student Performance in the Senior Cycle of Irish Post-Primary Schools," Research Series, Economic and Social Research Institute (ESRI), number GRS129.
    15. Nada Eissa & Jeffrey B. Liebman, 1996. "Labor Supply Response to the Earned Income Tax Credit," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(2), pages 605-637.
    16. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    17. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    18. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    19. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    20. Joshua D. Angrist, 1995. "Conditioning on the Probability of Selection to Control Selection Bias," NBER Technical Working Papers 0181, National Bureau of Economic Research, Inc.
    21. Joshua D. Angrist & Guido W. Imbens & D.B. Rubin, 1993. "Identification of Causal Effects Using Instrumental Variables," NBER Technical Working Papers 0136, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Conniffe & Vanessa Gash & Philip J. O'Connell, 2000. "Evaluating State Programmes - “Natural Experiments” and Propensity Scores," The Economic and Social Review, Economic and Social Studies, vol. 31(4), pages 283-308.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    4. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    5. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    6. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    7. Almus, Matthias, 2001. "Evaluating the impact of public start-up assistance: results from an econometric approach," ZEW Discussion Papers 01-23, ZEW - Leibniz Centre for European Economic Research.
    8. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    9. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    10. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    11. Lorraine Dearden & Barbara Sianesi, 2001. "Estimating the Returns to Education: Models, Methods and Results," CEE Discussion Papers 0016, Centre for the Economics of Education, LSE.
    12. Jose C. Galdo & Jeffrey Smith & Dan Black, 2008. "Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data," Annals of Economics and Statistics, GENES, issue 91-92, pages 189-216.
    13. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    14. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    15. Jeffrey Smith, 2000. "A Critical Survey of Empirical Methods for Evaluating Active Labor Market Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 136(III), pages 247-268, September.
    16. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    17. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    18. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    19. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    20. V. Joseph Hotz & Guido W. Imbens & Jacob A. Klerman, 2000. "The Long-Term Gains from GAIN: A Re-Analysis of the Impacts of the California GAIN Program," NBER Working Papers 8007, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esr:wpaper:wp126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Burns (email available below). General contact details of provider: https://edirc.repec.org/data/esriiie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.