IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/120337.html
   My bibliography  Save this paper

Forecasting Annual Inflation in Suriname

Author

Listed:
  • Ooft, G.
  • Bhaghoe, S.
  • Franses, Ph.H.B.F.

Abstract

For many countries, statistical information on macroeconomic variables is not abundant and hence creating forecasts can be cumbersome. This paper addresses the creation of current year forecasts from a MIDAS regression for annual inflation rates where monthly inflation rates are the explanatory variables, and where the latter are only available for the last one and a half decade. The model can be viewed as a hybrid New-Keynesian Philips curve (NKPC). Specific focus is given to the forecast accuracy concerning the high inflation period in 2016-2017.

Suggested Citation

  • Ooft, G. & Bhaghoe, S. & Franses, Ph.H.B.F., 2019. "Forecasting Annual Inflation in Suriname," Econometric Institute Research Papers EI2019-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:120337
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/120337/EI2019-32.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bart Frijns & Dimitris Margaritis, 2008. "Forecasting daily volatility with intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 523-540.
    2. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    3. Blix, Mårten, 1999. "Forecasting Swedish Inflation With a Markov Switching VAR," Working Paper Series 76, Sveriges Riksbank (Central Bank of Sweden).
    4. Ooft, Gavin, 2016. "Inflation and Economic Activity in Suriname," EconStor Preprints 215533, ZBW - Leibniz Information Centre for Economics.
    5. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    6. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    7. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
    8. Denice Bodeutsch & Philip Hans Franses, 2015. "The Stock Exchange of Suriname: Returns, Volatility, Correlations, and Weak-Form Efficiency," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(1), pages 130-139, January.
    9. Gali, Jordi & Gertler, Mark & David Lopez-Salido, J., 2005. "Robustness of the estimates of the hybrid New Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1107-1118, September.
    10. Jordi Galí, 2008. "Introduction to Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework," Introductory Chapters, in: Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework, Princeton University Press.
    11. Bruce Preston, 2005. "Learning about Monetary Policy Rules when Long-Horizon Expectations Matter," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    12. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    13. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    14. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    15. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    16. International Monetary Fund, 2019. "Suriname: Selected Issues," IMF Staff Country Reports 2019/392, International Monetary Fund.
    17. Mr. Masahiro Nozaki & Mr. Tobias Roy & Mr. Pawel Dyczewski & Mr. Bernhard Fritz-Krockow & Ms. Fanny M Torres Gavela & Mr. Gamal Z El-Masry & Mr. Rafael A Portillo, 2009. "Suriname: Toward Stability and Growth," IMF Departmental Papers / Policy Papers 2009/003, International Monetary Fund.
    18. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    19. Philip Hans Franses, 2019. "On inflation expectations in the NKPC model," Empirical Economics, Springer, vol. 57(6), pages 1853-1864, December.
    20. JÖrg Breitung & Christoph Roling, 2015. "Forecasting Inflation Rates Using Daily Data: A Nonparametric MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 588-603, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Hans Franses, 2019. "On inflation expectations in the NKPC model," Empirical Economics, Springer, vol. 57(6), pages 1853-1864, December.
    2. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    3. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    4. Yasufumi Gemma & Takushi Kurozumi & Mototsugu Shintani, 2023. "Trend Inflation and Evolving Inflation Dynamics:A Bayesian GMM Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 506-520, December.
    5. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    6. Paloviita, Maritta & Mayes, David, 2005. "The use of real-time information in Phillips-curve relationships for the euro area," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 415-434, December.
    7. Paul Hubert & Harun Mirza, 2019. "The role of forward‐ and backward‐looking information for inflation expectations formation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(8), pages 733-748, December.
    8. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    9. Oinonen, Sami & Vilmi, Lauri, 2021. "Analysing euro area inflation outlook with the Phillips curve," BoF Economics Review 5/2021, Bank of Finland.
    10. Toshihiro Okada, 2017. "Time to Innovate and Aggregate Fluctuations: a New Keynesian Model with Endogenous Technology," Discussion Paper Series 154, School of Economics, Kwansei Gakuin University, revised Dec 2018.
    11. Choi, Yoonseok, 2021. "Inflation dynamics, the role of inflation at different horizons and inflation uncertainty," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 649-662.
    12. Rareș-Petru MIHALACHE & Dumitru Alexandru BODISLAV, 2019. "The new Keynesian Phillips Curve. Implications. Strengths and weaknesses," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 85-92, Winter.
    13. Chengsi Zhang & Joel Clovis, 2010. "The New Keynesian Phillips Curve of Rational Expectations: A Serial Correlation Extension," Journal of Applied Economics, Taylor & Francis Journals, vol. 13(1), pages 159-179, May.
    14. Carlos Medel, 2021. "Forecasting Brazilian Inflation with the Hybrid New Keynesian Phillips Curve: Assessing the Predictive Role of Trading Partners," Working Papers Central Bank of Chile 900, Central Bank of Chile.
    15. Medel, Carlos, 2015. "Inflation Dynamics and the Hybrid Neo Keynesian Phillips Curve: The Case of Chile," MPRA Paper 62609, University Library of Munich, Germany.
    16. Syed Kanwar Abbas & Prasad Sankar Bhattacharya & Debdulal Mallick & Pasquale Sgro, 2016. "The New Keynesian Phillips Curve in a Small Open Economy: Empirical Evidence from Australia," The Economic Record, The Economic Society of Australia, vol. 92(298), pages 409-434, September.
    17. Zhang, Chengsi & Murasawa, Yasutomo, 2011. "Output gap measurement and the New Keynesian Phillips curve for China," Economic Modelling, Elsevier, vol. 28(6), pages 2462-2468.
    18. Johanna Amberger & Ralf Fendel, 2017. "Understanding inflation dynamics in the Euro Area: deviants and commonalities across member countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(2), pages 261-293, May.
    19. Phiri, Andrew, 2015. "Examining asymmetric effects in the South African Philips curve: Evidence from logistic smooth transition regression (LSTR) models," MPRA Paper 64487, University Library of Munich, Germany.
    20. Kapur, Muneesh, 2018. "Macroeconomic Policies and Transmission Dynamics in India," MPRA Paper 88566, University Library of Munich, Germany.

    More about this item

    Keywords

    Inflation; New Keynesian Phillips curve; Rational Expectations; MIDAS Regression; Forecasting;
    All these keywords.

    JEL classification:

    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian; Modern Monetary Theory
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:120337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.