IDEAS home Printed from https://ideas.repec.org/p/edn/esedps/15.html
   My bibliography  Save this paper

Dynamic asymmetries in US unemployment

Author

Abstract

We examine dynamic asymmetries in US unemployment using non-linear time series models and Bayesian methods. We find strong statistical evidence in favour of a two regime threshold autoregressive model. Empirical results indicate that, once we take into account both parameter and model uncertainty, there are economically interesting asymmetries in the unemployment rate. One finding of particular interest is that shocks which lower the unemployment rate tend to have a smaller effect than shocks which raise the unemployment rate. This finding is consistent with unemployment rises being sudden and falls gradual.

Suggested Citation

  • Gary Koop & Simon M. Potter, 1998. "Dynamic asymmetries in US unemployment," Edinburgh School of Economics Discussion Paper Series 15, Edinburgh School of Economics, University of Edinburgh.
  • Handle: RePEc:edn:esedps:15
    as

    Download full text from publisher

    File URL: http://www.econ.ed.ac.uk/papers/id15_esedps.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    2. Steven J. Davis & John Haltiwanger, 1990. "Gross Job Creation and Destruction: Microeconomic Evidence and Macroeconomic Implications," NBER Chapters, in: NBER Macroeconomics Annual 1990, Volume 5, pages 123-186, National Bureau of Economic Research, Inc.
    3. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    4. Brock, William A. & Sayers, Chera L., 1988. "Is the business cycle characterized by deterministic chaos?," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 71-90, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo Altissimo & Giovanni L. Violante, 2001. "The non-linear dynamics of output and unemployment in the U.S," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 461-486.
    2. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    3. Antonio F. Galvao Jr. & Gabriel Montes‐Rojas & Jose Olmo, 2011. "Threshold quantile autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 253-267, May.
    4. Mehmet Caner & Bruce E. Hansen, 1998. "Threshold Autoregressions with a Near Unit Root," Working Papers 9821, Department of Economics, Bilkent University.
    5. Simon Potter, 1999. "Nonlinear Time Series Modelling: An Introduction," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 505-528, December.
    6. Mélika Ben Salem & Corinne Perraudin, 2001. "Tests de linéarité, spécification et estimation de modèles à seuil : une analyse comparée des méthodes de Tsay et de Hansen," Post-Print hal-04176271, HAL.
    7. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    8. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    9. Richard S. J. Tol & Francisco Estrada & Carlos Gay-García, 2012. "The persistence of shocks in GDP and the estimation of the potential economic costs of climate change," Working Paper Series 4312, Department of Economics, University of Sussex Business School.
    10. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    11. George Kapetanios, 2003. "Threshold models for trended time series," Empirical Economics, Springer, vol. 28(4), pages 687-707, November.
    12. Catherine Bruneau & Amine Lahiani, 2006. "Estimation d'un modèle TIMA avec asymétrie contemporaine par inférence indirecte," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 142(IV), pages 479-500, December.
    13. Mélika Ben Salem & Corinne Perraudin, 2001. "Tests de linéarité, spécification et estimation de modèles à seuil : une analyse comparée des méthodes de Tsay et de Hansen," Economie & Prévision, La Documentation Française, vol. 148(2), pages 157-176.
    14. John Ammer & Allan D. Brunner, 1995. "When is monetary policy effective?," International Finance Discussion Papers 520, Board of Governors of the Federal Reserve System (U.S.).
    15. Catherine Bruneau & Amine Lahiani, 2006. "Estimation d'un modèle TIMA avec asymétrie contemporaine par inférence indirecte," Working Papers hal-04138874, HAL.
    16. Philip M. Bodman, 1998. "Asymmetry and Duration Dependence in Australian GDP and Unemployment," The Economic Record, The Economic Society of Australia, vol. 74(227), pages 399-411, December.
    17. Tatsuma Wada & Pierre Perron, 2005. "Trend and Cycles: A New Approach and Explanations of Some Old Puzzles," Computing in Economics and Finance 2005 252, Society for Computational Economics.
    18. Alain Guay & Olivier Scaillet, 1999. "Indirect Inference, Nuisance Parameter and Threshold Moving Average," Cahiers de recherche CREFE / CREFE Working Papers 95, CREFE, Université du Québec à Montréal.
    19. Mills, Terence C., 1995. "Business cycle asymmetries and non-linearities in U.K. macroeconomic time series," Ricerche Economiche, Elsevier, vol. 49(2), pages 97-124, June.
    20. Diego Valderrama, 2002. "Nonlinearities in international business cycles," Working Paper Series 2002-23, Federal Reserve Bank of San Francisco.

    More about this item

    Keywords

    nonlinearity; threshold autoregression; Bayesian; unemployment;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:esedps:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Office (email available below). General contact details of provider: https://edirc.repec.org/data/deediuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.