IDEAS home Printed from https://ideas.repec.org/p/ecm/latm04/112.html
   My bibliography  Save this paper

A simple and general test for white noise

Author

Listed:
  • Carlos Velasco
  • Ignacio N. Lobato

Abstract

This article considers testing that a time series is uncorrelated when it possibly exhibits some form of dependence. Contrary to the currently employed tests that require selecting arbitrary user-chosen numbers to compute the associated tests statistics, we consider a test statistic that is very simple to use because it does not require any user chosen number and because its asymptotic null distribution is standard under general weak dependent conditions, and hence, asymptotic critical values are readily available. We consider the case of testing that the raw data is white noise, and also consider the case of applying the test to the residuals of an ARMA model. Finally, we also study finite sample performance

Suggested Citation

  • Carlos Velasco & Ignacio N. Lobato, 2004. "A simple and general test for white noise," Econometric Society 2004 Latin American Meetings 112, Econometric Society.
  • Handle: RePEc:ecm:latm04:112
    as

    Download full text from publisher

    File URL: http://repec.org/esLATM04/up.4121.1081794204.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    2. Durlauf, Steven N., 1991. "Spectral based testing of the martingale hypothesis," Journal of Econometrics, Elsevier, vol. 50(3), pages 355-376, December.
    3. Manuel Dominguez & Ignacio Lobato, 2003. "Testing the Martingale Difference Hypothesis," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 351-377.
    4. Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2002. "Testing For Zero Autocorrelation In The Presence Of Statistical Dependence," Econometric Theory, Cambridge University Press, vol. 18(3), pages 730-743, June.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
    7. Tim Bollerslev, 1988. "On The Correlation Structure For The Generalized Autoregressive Conditional Heteroskedastic Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(2), pages 121-131, March.
    8. Franke, J. & Hardle, W., 1990. "On bootstrapping kernel spectralestimates," LIDAM Discussion Papers CORE 1990058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Weiss, Andrew A, 1986. "ARCH and Bilinear Time Series Models: Comparison and Combination," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 59-70, January.
    10. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    11. Bera, Anil K & Higgins, Matthew L, 1997. "ARCH and Bilinearity as Competing Models for Nonlinear Dependence," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 43-50, January.
    12. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    13. Deo, Rohit S. & Chen, Willa W., 2000. "On the integral of the squared periodogram," Stochastic Processes and their Applications, Elsevier, vol. 85(1), pages 159-176, January.
    14. Horowitz, Joel L. & Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2006. "Bootstrapping the Box-Pierce Q test: A robust test of uncorrelatedness," Journal of Econometrics, Elsevier, vol. 133(2), pages 841-862, August.
    15. An, Hong-Zhi & Chen, Zhao-Guo & Hannan, E. J., 1983. "The maximum of the periodogram," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 383-400, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    2. Nankervis, John C. & Savin, N. E., 2010. "Testing for Serial Correlation: Generalized Andrews–Ploberger Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 246-255.
    3. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    4. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    5. Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.
    6. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    8. Hill, Jonathan B. & Motegi, Kaiji, 2019. "Testing the white noise hypothesis of stock returns," Economic Modelling, Elsevier, vol. 76(C), pages 231-242.
    9. repec:wyi:journl:002087 is not listed on IDEAS
    10. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    11. Adrian Wai-Kong Cheung & Jen-Je Su & Astrophel Kim Choo, 2011. "Are Euro exchange rates markets efficient? New evidence from a large panel," Discussion Papers in Finance finance:201109, Griffith University, Department of Accounting, Finance and Economics.
    12. Neil Kellard & Denise Osborn & Jerry Coakley & John C. Nankervis & Periklis Kougoulis & Jerry Coakley, 2015. "Generalized Variance-Ratio Tests in the Presence of Statistical Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 687-705, September.
    13. Christian M. Hafner & Helmut Herwartz, 2009. "Testing for linear vector autoregressive dynamics under multivariate generalized autoregressive heteroskedasticity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 294-323, August.
    14. Adrian Wai‐Kong Cheung & Jen‐Je Su & Astrophel Kim Choo, 2012. "Are exchange rates serially correlated? New evidence from the Euro FX markets," Review of Financial Economics, John Wiley & Sons, vol. 21(1), pages 14-20, January.
    15. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    16. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    17. Gençay, Ramazan & Signori, Daniele, 2015. "Multi-scale tests for serial correlation," Journal of Econometrics, Elsevier, vol. 184(1), pages 62-80.
    18. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Testing the martingale difference hypothesis using integrated regression functions," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2278-2294, December.
    19. Chen, Min & Zhu, Ke, 2014. "Sign-based specification tests for martingale difference with conditional heteroscedasity," MPRA Paper 56347, University Library of Munich, Germany.
    20. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    21. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.

    More about this item

    Keywords

    autocorrelation; spectral analysis; nonlinear dependence;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:latm04:112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.