IDEAS home Printed from https://ideas.repec.org/p/drm/wpaper/2017-5.html
   My bibliography  Save this paper

Forecasting economic activity in data-rich environment

Author

Listed:
  • Maxime Leroux
  • Rachidi Kotchoni
  • Dalibor Stevanovic

Abstract

This paper compares the performance of five classes of forecasting models in an extensive out-of-sample exercise. The types of models considered are standard univariate models, factor-augmented regressions, dynamic factor models, other data-rich models and forecast combinations. These models are compared using four types of data: real series, nominal series, the stock market index and exchange rates. Our Findings can be summarized in a few points: (i) data-rich models and forecasts combination approaches are the best for predicting real series; (ii) ARMA(1,1) model predicts inflation change incredibly well and outperform data-rich models; (iii) the simple average of forecasts is the best approach to predict future SP500 returns; (iv) exchange rates can be predicted at short horizons mainly by univariate models but the random walk dominates at medium and long terms; (v) the optimal structure of forecasting equations changes much over time; and (vi) the dispersion of out-of-sample point forecasts is a good predictor of some macroeconomic and financial uncertainty measures as well as of the business cycle movements among real activity series.

Suggested Citation

  • Maxime Leroux & Rachidi Kotchoni & Dalibor Stevanovic, 2017. "Forecasting economic activity in data-rich environment," EconomiX Working Papers 2017-5, University of Paris Nanterre, EconomiX.
  • Handle: RePEc:drm:wpaper:2017-5
    as

    Download full text from publisher

    File URL: http://economix.fr/pdf/dt/2017/WP_EcoX_2017-05.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    2. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    3. Rossi, Barbara & Sekhposyan, Tatevik & Soupré, Mattheiu, 2016. "Understanding the Sources of Macroeconomic Uncertainty," CEPR Discussion Papers 11415, C.E.P.R. Discussion Papers.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    5. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    6. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    7. Nathan Bedock & Dalibor Stevanovic, 2017. "An empirical study of credit shock transmission in a small open economy," Canadian Journal of Economics, Canadian Economics Association, vol. 50(2), pages 541-570, May.
    8. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    9. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    10. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    11. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    14. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    15. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    16. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    17. Jean-Marie Dufour & Dalibor Stevanović, 2013. "Factor-Augmented VARMA Models With Macroeconomic Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 491-506, October.
    18. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    19. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    20. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    21. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    22. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    23. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    24. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    25. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    26. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    2. Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018. "Mixed frequency models with MA components," Discussion Papers 02/2018, Deutsche Bundesbank.
    3. Philippe Goulet Coulombe, 2020. "Time-Varying Parameters as Ridge Regressions," Papers 2009.00401, arXiv.org, revised Nov 2024.
    4. Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
    2. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    3. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
    6. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    7. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    8. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    9. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    10. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    13. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    14. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    15. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    17. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    18. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    19. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    20. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," Working Papers ECARES ECARES 2011-019, ULB -- Universite Libre de Bruxelles.
    21. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Keywords

    Forecasting; Factor Models; Data-rich environment; Model averaging.;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:drm:wpaper:2017-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valerie Mignon (email available below). General contact details of provider: https://edirc.repec.org/data/modemfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.