IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/24613.html
   My bibliography  Save this paper

Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators

Author

Listed:
  • Cabana Garceran del Vall, Elisa
  • Laniado Rodas, Henry
  • Lillo Rodríguez, Rosa Elvira

Abstract

A collection of methods for multivariate outlier detection based on a robust Mahalanobis distance is proposed. The procedure consists on different combinations of robust estimates for location and covariance matrix based on shrinkage. The performance of our proposal is illustrated, through the comparison to other techniques from the literature, in a simulation study. The resulting high correct classification rates and low false classification rates in the vast majority of cases, and also the good computational times shows the goodness of our proposal. The performance is also illustrated with a real dataset example and some conclusions are established.

Suggested Citation

  • Cabana Garceran del Vall, Elisa & Laniado Rodas, Henry & Lillo Rodríguez, Rosa Elvira, 2017. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," DES - Working Papers. Statistics and Econometrics. WS 24613, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:24613
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/144dfb19-f1fe-4a1e-b0d3-11d8ca063958/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Michael Falk, 1997. "On Mad and Comedians," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 615-644, December.
    3. Davy Paindaveine & Germain Van bever, 2013. "From Depth to Local Depth: A Focus on Centrality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1105-1119, September.
    4. Arup Bose & Probal Chaudhuri, 1993. "On the dispersion of multivariate median," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 541-550, September.
    5. Arup Bose, 1995. "Estimating the asymptotic dispersion of theL 1 median," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 267-271, June.
    6. Dodge, Yadolah, 1987. "An introduction to L1-norm based statistical data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 5(4), pages 239-253, September.
    7. Cator, Eric A. & Lopuhaä, Hendrik P., 2010. "Asymptotic expansion of the minimum covariance determinant estimators," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2372-2388, November.
    8. Tarr, G. & Müller, S. & Weber, N.C., 2016. "Robust estimation of precision matrices under cellwise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 404-420.
    9. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Cabana & Rosa E. Lillo & Henry Laniado, 2021. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," Statistical Papers, Springer, vol. 62(4), pages 1583-1609, August.
    2. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    3. Li, Weiming & Xu, Yangchang, 2022. "Asymptotic properties of high-dimensional spatial median in elliptical distributions with application," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    4. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
    5. Gambacciani, Marco & Paolella, Marc S., 2017. "Robust normal mixtures for financial portfolio allocation," Econometrics and Statistics, Elsevier, vol. 3(C), pages 91-111.
    6. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    7. Makoto Aoshima & Kazuyoshi Yata, 2014. "A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 983-1010, October.
    8. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    9. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    10. Daniel Kosiorowski & Jerzy P. Rydlewski, 2020. "Centrality-oriented causality. A study of EU agricultural subsidies and digital developement in Poland," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(3), pages 47-63.
    11. Cousido-Rocha, Marta & de Uña-Álvarez, Jacobo & Hart, Jeffrey D., 2019. "A two-sample test for the equality of univariate marginal distributions for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    12. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
    13. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    14. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    15. Liu, Zhi & Xia, Xiaochao & Zhou, Wang, 2015. "A test for equality of two distributions via jackknife empirical likelihood and characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 97-114.
    16. Tzviel Frostig & Yoav Benjamini, 2022. "Testing the equality of multivariate means when $$p>n$$ p > n by combining the Hotelling and Simes tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 390-415, June.
    17. Zhou, Bu & Guo, Jia, 2017. "A note on the unbiased estimator of Σ2," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 141-146.
    18. Steven E. Pav, 2013. "Asymptotic distribution of the Markowitz portfolio," Papers 1312.0557, arXiv.org, revised Mar 2020.
    19. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2016. "Robust Growth-Optimal Portfolios," Management Science, INFORMS, vol. 62(7), pages 2090-2109, July.
    20. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.

    More about this item

    Keywords

    outlier detection;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:24613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.