IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/9205.html
   My bibliography  Save this paper

Modeling default correlation in a US retail loan portfolio

Author

Listed:
  • Wolff, Christian
  • Bams, Dennis
  • Pisa, Magdalena

Abstract

This paper generalizes the existing asymptotic single-factor model to address issues related to industry heterogeneity, default clustering and parameter uncertainty of capital requirement in US retail loan portfolios. We argue that the Basel II capital requirement overstates the riskiness of small businesses even with prudential adjustments. Moreover, our estimates show that both location and spread of loss distribution bare uncertainty. Their shifts over the course of the recent crisis have important risk management implications. The results are based on a unique representative dataset of US small businesses from 2005 to 2011 and give fundamental insights into the US economy.

Suggested Citation

  • Wolff, Christian & Bams, Dennis & Pisa, Magdalena, 2012. "Modeling default correlation in a US retail loan portfolio," CEPR Discussion Papers 9205, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:9205
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP9205
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Dietsch, 2004. "Should SME exposures be treated as retail or corporate exposures: a comparative analysis of probabilities of default and assets correlations in French and German SMEs," ULB Institutional Repository 2013/14164, ULB -- Universite Libre de Bruxelles.
    2. Glennon, Dennis & Nigro, Peter, 2005. "Measuring the Default Risk of Small Business Loans: A Survival Analysis Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(5), pages 923-947, October.
    3. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    4. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    5. Lopez, Jose A., 2004. "The empirical relationship between average asset correlation, firm probability of default, and asset size," Journal of Financial Intermediation, Elsevier, vol. 13(2), pages 265-283, April.
    6. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    7. Dietsch, Michel & Petey, Joel, 2002. "The credit risk in SME loans portfolios: Modeling issues, pricing, and capital requirements," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 303-322, March.
    8. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    9. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    10. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    11. Dietsch, Michel & Petey, Joel, 2004. "Should SME exposures be treated as retail or corporate exposures? A comparative analysis of default probabilities and asset correlations in French and German SMEs," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 773-788, April.
    12. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    13. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    14. Botha, Marius & Vuuren, Gary Van, 2010. "Implied asset correlation in retail loan portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 3(2), pages 156-173, March.
    15. Giesecke, Kay, 2006. "Default and information," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 2281-2303, November.
    16. Philippe Jorion & Gaiyan Zhang, 2009. "Credit Contagion from Counterparty Risk," Journal of Finance, American Finance Association, vol. 64(5), pages 2053-2087, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikael Juselius & Nikola Tarashev, 2022. "When uncertainty decouples expected and unexpected losses," BIS Working Papers 995, Bank for International Settlements.
    2. repec:zbw:bofrdp:2022_004 is not listed on IDEAS
    3. Mikael Juselius & Nikola Tarashev, 2020. "Forecasting expected and unexpected losses," BIS Working Papers 913, Bank for International Settlements.
    4. Wolff, Christian & Bams, Dennis & Pisa, Magdalena, 2015. "Ripple effects from industry defaults," CEPR Discussion Papers 10891, C.E.P.R. Discussion Papers.
    5. Mikael Juselius & Nikola Tarashev, 2020. "Forecasting expected and unexpected losses," BIS Working Papers 913, Bank for International Settlements.
    6. repec:zbw:bofrdp:2020_018 is not listed on IDEAS
    7. Düllmann, Klaus & Koziol, Philipp, 2013. "Evaluation of minimum capital requirements for bank loans to SMEs," Discussion Papers 22/2013, Deutsche Bundesbank.
    8. Mikael Juselius & Nikola Tarashev, 2022. "When uncertainty decouples expected and unexpected losses," BIS Working Papers 995, Bank for International Settlements.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolff, Christian & Bams, Dennis & Pisa, Magdalena, 2015. "Credit risk characteristics of US small business portfolios," CEPR Discussion Papers 10889, C.E.P.R. Discussion Papers.
    2. Daniel Rösch & Harald Scheule, 2014. "Forecasting Mortgage Securitization Risk Under Systematic Risk and Parameter Uncertainty," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(3), pages 563-586, September.
    3. Dietsch, Michel & Düllmann, Klaus & Fraisse, Henri & Koziol, Philipp & Ott, Christine, 2016. "Support for the SME supporting factor: Multi-country empirical evidence on systematic risk factor for SME loans," Discussion Papers 45/2016, Deutsche Bundesbank.
    4. Düllmann, Klaus & Koziol, Philipp, 2013. "Evaluation of minimum capital requirements for bank loans to SMEs," Discussion Papers 22/2013, Deutsche Bundesbank.
    5. Duellmann, Klaus & Küll, Jonathan & Kunisch, Michael, 2010. "Estimating asset correlations from stock prices or default rates--Which method is superior?," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2341-2357, November.
    6. Daniel Rösch & Harald Scheule, 2011. "Securitization rating performance and agency incentives," BIS Papers chapters, in: Bank for International Settlements (ed.), Portfolio and risk management for central banks and sovereign wealth funds, volume 58, pages 287-314, Bank for International Settlements.
    7. Daniel R÷Sch & Harald Scheule, 2010. "Downturn Credit Portfolio Risk, Regulatory Capital and Prudential Incentives-super-," International Review of Finance, International Review of Finance Ltd., vol. 10(Financial), pages 185-207.
    8. Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2021. "Systematic credit risk in securitised mortgage portfolios," Journal of Banking & Finance, Elsevier, vol. 122(C).
    9. Rösch, Daniel & Scheule, Harald, 2009. "The Empirical Relation between Credit Quality, Recovery and Correlation," Hannover Economic Papers (HEP) dp-418, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Klaus Duellmann & Jonathan Küll & Michael Kunisch, 2010. "Estimating asset correlations from stock prices or default rates - which method is superior?," Post-Print hal-00736734, HAL.
    11. Düllmann, Klaus & Kunisch, Michael & Küll, Jonathan, 2008. "Estimating asset correlations from stock prices or default rates: which method is superior?," Discussion Paper Series 2: Banking and Financial Studies 2008,04, Deutsche Bundesbank.
    12. Bank for International Settlements, 2011. "Portfolio and risk management for central banks and sovereign wealth funds," BIS Papers, Bank for International Settlements, number 58.
    13. Lutz Hahnenstein, 2004. "Calibrating the CreditMetrics™ correlation concept — Empirical evidence from Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 18(4), pages 358-381, December.
    14. Lee, Shih-Cheng & Lin, Chien-Ting & Yang, Chih-Kai, 2011. "The asymmetric behavior and procyclical impact of asset correlations," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2559-2568, October.
    15. J. Crook & T. Bellotti, 2012. "Asset correlations for credit card defaults," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 87-95, January.
    16. Annalisa Di Clemente, 2020. "Modeling Portfolio Credit Risk Taking into Account the Default Correlations Using a Copula Approach: Implementation to an Italian Loan Portfolio," JRFM, MDPI, vol. 13(6), pages 1-24, June.
    17. Palombini, Edgardo, 2009. "Factor models and the credit risk of a loan portfolio," MPRA Paper 20107, University Library of Munich, Germany.
    18. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    19. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    20. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.

    More about this item

    Keywords

    Credit risk;

    JEL classification:

    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:9205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.