IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/6326.html
   My bibliography  Save this paper

Bayesian VARs with Large Panels

Author

Listed:
  • Reichlin, Lucrezia
  • Giannone, Domenico
  • Banbura, Marta

Abstract

This paper assesses the performance of Bayesian Vector Autoregression (BVAR) for models of different size. We consider standard specifications in the macroeconomic literature based on, respectively, three and eight variables and compare results with those obtained by larger models containing twenty or over one hundred conjunctural indicators. We first study forecasting accuracy and then perform a structural exercise focused on the effect of a monetary policy shock on the macroeconomy. Results show that BVARs estimated on the basis of hundred variables perform well in forecasting and are suitable for structural analysis.

Suggested Citation

  • Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:6326
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP6326
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin Eichenbaum & Charles L. Evans, 1995. "Some Empirical Evidence on the Effects of Shocks to Monetary Policy on Exchange Rates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(4), pages 975-1009.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    4. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    5. Mackowiak, Bartosz, 2006. "What does the Bank of Japan do to East Asia?," Journal of International Economics, Elsevier, vol. 70(1), pages 253-270, September.
    6. Mackowiak, Bartosz, 2007. "External shocks, U.S. monetary policy and macroeconomic fluctuations in emerging markets," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2512-2520, November.
    7. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    8. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    9. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    10. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    11. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    12. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    13. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    14. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    15. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    16. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    17. Canova, Fabio, 1991. "The Sources of Financial Crisis: Pre- and Post-Fed Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 689-713, August.
    18. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    19. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    20. Harald Uhlig, 2004. "What moves GNP?," Econometric Society 2004 North American Winter Meetings 636, Econometric Society.
    21. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    22. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, April.
    23. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    24. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    25. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    26. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    27. Gordon, David B & Leeper, Eric M, 1994. "The Dynamic Impacts of Monetary Policy: An Exercise in Tentative Identification," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1228-1247, December.
    28. Martin D. D. Evans, 2017. "Exchange-Rate Dark Matter," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 4, pages 101-185, World Scientific Publishing Co. Pte. Ltd..
    29. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    30. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    31. Lippi, Marco & Reichlin, Lucrezia & Forni, Mario, 2003. "Opening the Black Box: Structural Factor Models versus Structural VARs," CEPR Discussion Papers 4133, C.E.P.R. Discussion Papers.
    32. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    33. Litterman, Robert B, 1986. "A Statistical Approach to Economic Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 1-4, January.
    34. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    35. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    36. Kim, Soyoung, 2001. "International transmission of U.S. monetary policy shocks: Evidence from VAR's," Journal of Monetary Economics, Elsevier, vol. 48(2), pages 339-372, October.
    37. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    38. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    39. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    40. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    41. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    42. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    43. Mr. Martin D Evans, 2012. "Exchange-Rate Dark Matter," IMF Working Papers 2012/066, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    2. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    3. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    4. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    5. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    6. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    7. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    8. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    9. Forni, Mario & Cavicchioli, Maddalena & Lippi, Marco & Zaffaroni, Paolo, 2016. "Eigenvalue Ratio Estimators for the Number of Common Factors," CEPR Discussion Papers 11440, C.E.P.R. Discussion Papers.
    10. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    11. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    12. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    13. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    14. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    15. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," Working Papers ECARES ECARES 2011-019, ULB -- Universite Libre de Bruxelles.
    16. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    17. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    18. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
    19. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    20. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    21. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.

    More about this item

    Keywords

    Bayesian var; Forecasting; Monetary var; Large cross-sections;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:6326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.