IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/5357.html
   My bibliography  Save this paper

Gun Prevalence, Homicide Rates and Causality: A GMM Approach to Endogeneity Bias

Author

Listed:
  • Schaffer, Mark
  • Kleck, Gary
  • Kovandzic, Tomislav

Abstract

The positive correlation between gun prevalence and homicide rates has been widely documented. But does this correlation reflect a causal relationship? This study seeks to answer the question of whether more guns cause more crime, and unlike nearly all previous such studies, we properly account for the endogeneity of gun ownership levels. We discuss the three main sources of endogeneity bias - reverse causality (higher crime rates lead people to acquire guns for self-protection), mismeasurement of gun levels, and omitted/confounding variables - and show how the Generalized Method of Moments (GMM) can provide an empirical researcher with both a clear modeling framework and a set of estimation and specification testing procedures that can address these problems. A county level cross-sectional analysis was performed using data on every US county with a population of at least 25,000 in 1990; the sample covers over 90% of the US population in that year. Gun ownership levels were measured using the percent of suicides committed with guns, which recent research indicates is the best measure of gun levels for cross-sectional research. We apply our procedures to these data, and find strong evidence of the existence of endogeneity problems. When the problem is ignored, gun levels are associated with higher rates of gun homicide; when the problem is addressed, this association disappears or reverses. Our results indicate that gun prevalence has no significant net positive effect on homicide rates: ceteris paribus, more guns do not mean more crime.

Suggested Citation

  • Schaffer, Mark & Kleck, Gary & Kovandzic, Tomislav, 2005. "Gun Prevalence, Homicide Rates and Causality: A GMM Approach to Endogeneity Bias," CEPR Discussion Papers 5357, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:5357
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP5357
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    4. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    5. Moody, Carlisle E, 2001. "Testing for the Effects of Concealed Weapons Laws: Specification Errors and Robustness," Journal of Law and Economics, University of Chicago Press, vol. 44(2), pages 799-813, October.
    6. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    7. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    8. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    9. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    10. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    11. Mark Duggan, 2001. "More Guns, More Crime," Journal of Political Economy, University of Chicago Press, vol. 109(5), pages 1086-1114, October.
    12. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    13. Alastair R. Hall & Fernanda P. M. Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287, January.
    14. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    15. Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
    16. Ruddell, Rick & Mays, G. Larry, 2005. "State background checks and firearms homicides," Journal of Criminal Justice, Elsevier, vol. 33(2), pages 127-136.
    17. Nicholas J. Cox, 1998. "WINSOR: Stata module to Winsorize a variable," Statistical Software Components S361402, Boston College Department of Economics, revised 09 Aug 2006.
    18. Bice, Douglas C & Hemley, David D, 2002. "The Market for New Handguns: An Empirical Investigation," Journal of Law and Economics, University of Chicago Press, vol. 45(1), pages 251-265, April.
    19. Adrian R Pagan & Anthony D Hall, 1983. "Diagnostic tests as residual analysis," Published Paper Series 1983-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kovandzic, Tomislav & Schaffer, Mark E & Kleck, Gary, 2008. "Estimating the Causal Effect of Gun Prevalence on Homicide Rates: A Local Average Treatment Effect Approach," IZA Discussion Papers 3589, Institute of Labor Economics (IZA).
    2. Bertrand, Olivier & Betschinger, Marie-Ann, 2012. "Performance of domestic and cross-border acquisitions: Empirical evidence from Russian acquirers," Journal of Comparative Economics, Elsevier, vol. 40(3), pages 413-437.
    3. Carlisle E. Moody, 2010. "Firearms and Homicide," Chapters, in: Bruce L. Benson & Paul R. Zimmerman (ed.), Handbook on the Economics of Crime, chapter 17, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    2. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/generalized method of moments estimation and testing," Stata Journal, StataCorp LP, vol. 7(4), pages 465-506, December.
    3. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/GMM estimation and testing," Boston College Working Papers in Economics 667, Boston College Department of Economics, revised 05 Sep 2007.
    4. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    5. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    6. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    7. Doko Tchatoka, Firmin Sabro & Dufour, Jean-Marie, 2008. "Instrument endogeneity and identification-robust tests: some analytical results," MPRA Paper 29613, University Library of Munich, Germany.
    8. repec:asg:wpaper:1025 is not listed on IDEAS
    9. repec:asg:wpaper:1019 is not listed on IDEAS
    10. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2007. "Performance of conditional Wald tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 116-132, July.
    11. Nepal, Mani & Bohara, Alok K, 2015. "Consumption insurance under uncertainty: The case of Nepal during Maoist insurgency," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 5(1), pages 1-31.
    12. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    13. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    14. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    15. Kovandzic, Tomislav & Schaffer, Mark E & Kleck, Gary, 2008. "Estimating the Causal Effect of Gun Prevalence on Homicide Rates: A Local Average Treatment Effect Approach," IZA Discussion Papers 3589, Institute of Labor Economics (IZA).
    16. Martin Strieborny & Madina Kukenova, 2016. "Investment in Relationship-Specific Assets: Does Finance Matter?," Review of Finance, European Finance Association, vol. 20(4), pages 1487-1515.
    17. Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.
    18. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2010. "Estimation uncertainty in structural inflation models with real wage rigidities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2554-2561, November.
    19. Konstantinos Angelopoulos & George Economides, 2008. "Fiscal policy, rent seeking, and growth under electoral uncertainty: theory and evidence from the OECD," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(4), pages 1375-1405, November.
    20. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    21. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    22. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.

    More about this item

    Keywords

    Crime; Homicide; Gun levels; Endogeneity; Gmm; Counties;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • K42 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - Illegal Behavior and the Enforcement of Law

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:5357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.