A dynamic component model for forecasting high-dimensional realized covariance matrices
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
References listed on IDEAS
- repec:hal:journl:peer-00815564 is not listed on IDEAS
- Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015.
"Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
- Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012.
"On the forecasting accuracy of multivariate GARCH models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
- LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010. "On the Forecasting Accuracy of Multivariate GARCH Models," Cahiers de recherche 1021, CIRPEE.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Clements, Michael P. & Smith, Jeremy, 1997.
"The performance of alternative forecasting methods for SETAR models,"
International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
- Clements, Michael P & Smith, Jeremy, 1996. "Performance of Alternative Forecasting Methods for Setar Models," The Warwick Economics Research Paper Series (TWERPS) 467, University of Warwick, Department of Economics.
- Clements, Michael P. & Smith, Jeremy, 1996. "The Performance of Alternative Forecasting Methods for SETAR Models," Economic Research Papers 268737, University of Warwick - Department of Economics.
- Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017.
"A vector heterogeneous autoregressive index model for realized volatility measures,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
- Cubadda, G. & Guardabascio, B. & Hecq, A.W., 2015. "A Vector Heterogeneous Autoregressive Index model for realized volatility measures," Research Memorandum 033, Maastricht University, Graduate School of Business and Economics (GSBE).
- Gianluca Cubadda & Barbara Guardabascio & Alain Hecq, 2016. "A Vector Heterogeneous Autoregressive Index Model for Realized Volatily Measures," CEIS Research Paper 391, Tor Vergata University, CEIS, revised 23 Jul 2016.
- Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011.
"Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading,"
Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," CREATES Research Papers 2008-63, Department of Economics and Business Economics, Aarhus University.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
- Neil Shephard & Ole E. Barndorff-Nielsen & Peter Reinhard Hansen, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Series Working Papers 397, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Papers 2008-W10, Economics Group, Nuffield College, University of Oxford.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Post-Print hal-00815564, HAL.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," OFRC Working Papers Series 2008fe29, Oxford Financial Research Centre.
- Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016.
"Estimation and empirical performance of non-scalar dynamic conditional correlation models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
- BAUWENS, Luc & GRIGORYEVA, Lyudmila & ORTEGA, Juan-Pablo, 2014. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," LIDAM Discussion Papers CORE 2014012, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Xin Jin & John M. Maheu, 2013.
"Modeling Realized Covariances and Returns,"
Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 335-369, March.
- Xin Jin & John M Maheu, 2010. "Modelling Realized Covariances and Returns," Working Papers tecipa-408, University of Toronto, Department of Economics.
- Xin Jin & John M. Maheu, 2011. "Modelling Realized Covariances and Returns," Working Paper series 08_11, Rimini Centre for Economic Analysis.
- Xin Jin & John M. Maheu, 2012. "Modelling Realized Covariances and Returns," Working Paper series 49_12, Rimini Centre for Economic Analysis.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016.
"Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2014. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Discussion Papers CORE 2014053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Reprints CORE 2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Rasmus S. Pedersen & Anders Rahbek, 2014.
"Multivariate variance targeting in the BEKK–GARCH model,"
Econometrics Journal, Royal Economic Society, vol. 17(1), pages 24-55, February.
- Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," CREATES Research Papers 2012-53, Department of Economics and Business Economics, Aarhus University.
- Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," Discussion Papers 12-23, University of Copenhagen. Department of Economics.
- Hafner, Christian M. & Linton, Oliver, 2010.
"Efficient estimation of a multivariate multiplicative volatility model,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
- Christian M. Hafner & Oliver Linton, 2009. "Efficient Estimation of a Multivariate Multiplicative Volatility Model," STICERD - Econometrics Paper Series 541, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Christian M. Hafner & Oliver Linton, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Post-Print hal-00732539, HAL.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Christian Francq & Lajos Horváth, 2011.
"Merits and Drawbacks of Variance Targeting in GARCH Models,"
Journal of Financial Econometrics, Oxford University Press, vol. 9(4), pages 619-656.
- Christian FRANCQ & Lajos HORVATH & Jean-Michel ZAKOIAN, 2009. "Merits and Drawbacks of Variance Targeting in GARCH Models," Working Papers 2009-17, Center for Research in Economics and Statistics.
- Francq, Christian & Horvath, Lajos & Zakoian, Jean-Michel, 2009. "Merits and drawbacks of variance targeting in GARCH models," MPRA Paper 15143, University Library of Munich, Germany.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
- Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013.
"Multivariate Volatility Modeling Of Electricity Futures,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
- Bauwens, Luc & Hafner, Christian M. & Pierret, Diane, 2011. "Multivariate volatility modeling of electricity futures," SFB 649 Discussion Papers 2011-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Bauwens, L. & Hafner, C. & Pierret, D., 2011. "Multivariate volatility modeling of electricity futures," LIDAM Discussion Papers ISBA 2011013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Luc Bauwens & Christian M. Hafner & Diane Pierret, 2011. "Multivariate Volatility Modeling of Electricity Futures," SFB 649 Discussion Papers SFB649DP2011-063, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- BAUWENS, Luc & HAFNER, Christian M. & PIERRET, Diane, 2013. "Multivariate volatility modeling of electricity futures," LIDAM Reprints CORE 2526, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & HAFNER, Christian & pierret, Diane, 2011. "Multivariate volatility modeling of electricity futures," LIDAM Discussion Papers CORE 2011011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
- Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
- BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Boudt, Kris & Laurent, Sébastien & Lunde, Asger & Quaedvlieg, Rogier & Sauri, Orimar, 2017.
"Positive semidefinite integrated covariance estimation, factorizations and asynchronicity,"
Journal of Econometrics, Elsevier, vol. 196(2), pages 347-367.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, Department of Economics and Business Economics, Aarhus University.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001.
"Normal Modified Stable Processes,"
Economics Series Working Papers
72, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Roxana Chiriac & Valeri Voev, 2011.
"Modelling and forecasting multivariate realized volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
- Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CREATES Research Papers 2008-39, Department of Economics and Business Economics, Aarhus University.
- Chiriac, Roxana & Voev, Valeri, 2008. "Modelling and forecasting multivariate realized volatility," CoFE Discussion Papers 08/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
- repec:hal:journl:peer-00732539 is not listed on IDEAS
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012.
"Multivariate high‐frequency‐based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012.
"The conditional autoregressive Wishart model for multivariate stock market volatility,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
- Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021.
"Fitting Vast Dimensional Time-Varying Covariance Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
- Robert Engle & Neil Shephard & Kevin Shepphard, 2008. "Fitting vast dimensional time-varying covariance models," OFRC Working Papers Series 2008fe30, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.
- Gourieroux, C. & Jasiak, J. & Sufana, R., 2009.
"The Wishart Autoregressive process of multivariate stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
- Joan Jasiak & R. Sufana & C. Gourieroux, 2005. "The Wishart Autoregressive Process of Multivariate Stochastic Volatility," Working Papers 2005_2, York University, Department of Economics.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Conrad, Christian & Stuermer, Karin, 2017. "On the economic determinants of optimal stock-bond portfolios: international evidence," Working Papers 0636, University of Heidelberg, Department of Economics.
- Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
- Xin Jin & John M. Maheu & Qiao Yang, 2019.
"Bayesian parametric and semiparametric factor models for large realized covariance matrices,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
- Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.
- Xin Jin & John M. Maheu & Qiao Yang, 2018. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," Working Paper series 18-02, Rimini Centre for Economic Analysis.
- Braione, Manuela, 2016.
"A time-varying long run HEAVY model,"
Statistics & Probability Letters, Elsevier, vol. 119(C), pages 36-44.
- BRAIONE, Manuela, 2016. "A time-varying long run HEAVY model," LIDAM Discussion Papers CORE 2016002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2021. "Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model," Econometrics and Statistics, Elsevier, vol. 20(C), pages 12-28.
- Naimoli, Antonio & Storti, Giuseppe, 2019.
"Heterogeneous component multiplicative error models for forecasting trading volumes,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
- Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," MPRA Paper 93802, University Library of Munich, Germany.
- Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
- Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
- Qifa Xu & Junqing Zuo & Cuixia Jiang & Yaoyao He, 2021. "A large constrained time‐varying portfolio selection model with DCC‐MIDAS: Evidence from Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3417-3435, July.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
- Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
- Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2019. "On the asymmetric impact of macro–variables on volatility," Economic Modelling, Elsevier, vol. 76(C), pages 135-152.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
- Bauwens, Luc & Xu, Yongdeng, 2023.
"DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
- Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
- BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Roxana Halbleib & Valeri Voev, 2011.
"Forecasting Covariance Matrices: A Mixed Frequency Approach,"
CREATES Research Papers
2011-03, Department of Economics and Business Economics, Aarhus University.
- Roxana Halbleib & Valerie Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Papers ECARES ECARES 2011-002, ULB -- Universite Libre de Bruxelles.
- Roxana Halbleib & Valeri Voev, 2012. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Paper Series of the Department of Economics, University of Konstanz 2012-30, Department of Economics, University of Konstanz.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- Varneskov, Rasmus & Voev, Valeri, 2013.
"The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts,"
Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
- Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, Department of Economics and Business Economics, Aarhus University.
- Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
- Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
- Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
- Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Roland Weigand, 2014.
"Matrix Box-Cox Models for Multivariate Realized Volatility,"
Working Papers
144, Bavarian Graduate Program in Economics (BGPE).
- Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
More about this item
Keywords
Realized covariance; dynamic component models; multi-step forecasting; MIDAS; targeting; model confidence set;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-03-10 (Econometrics)
- NEP-ETS-2016-03-10 (Econometric Time Series)
- NEP-FOR-2016-03-10 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2016001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.