IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_2356.html
   My bibliography  Save this paper

GM Estimation of Higher-Order Spatial Autoregressive Processes in Cross-Section Models with Heteroskedastic Disturbances

Author

Listed:
  • Harald Badinger
  • Peter Egger

Abstract

This paper generalizes the approach to estimating a first-order spatial autoregressive model with spatial autoregressive disturbances (SARAR(1,1)) in a cross-section with heteroskedastic innovations by Kelejian and Prucha (2008) to the case of spatial autoregressive models with spatial autoregressive disturbances of arbitrary (finite) order (SARAR(R,S)). We derive the moment conditions and the optimal weighting matrix for a generalized moments (GM) estimation procedure of the spatial regressive parameters of the disturbance process and define a generalized two-stages least squares estimator for the regression parameters of the model. We prove consistency of the proposed estimators, derive their (joint) asymptotic distribution, and provide Monte Carlo evidence on their small sample performance.

Suggested Citation

  • Harald Badinger & Peter Egger, 2008. "GM Estimation of Higher-Order Spatial Autoregressive Processes in Cross-Section Models with Heteroskedastic Disturbances," CESifo Working Paper Series 2356, CESifo.
  • Handle: RePEc:ces:ceswps:_2356
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp2356.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Besley, Timothy & Case, Anne, 1995. "Incumbent Behavior: Vote-Seeking, Tax-Setting, and Yardstick Competition," American Economic Review, American Economic Association, vol. 85(1), pages 25-45, March.
    3. Peter Egger & Horst Raff, 2015. "Tax rate and tax base competition for foreign direct investment," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 22(5), pages 777-810, October.
    4. Holtz-Eakin, Douglas, 1994. "Public-Sector Capital and the Productivity Puzzle," The Review of Economics and Statistics, MIT Press, vol. 76(1), pages 12-21, February.
    5. Badi Baltagi & Dong Li, 2000. "LM Tests for Functional Form and Spatial Correlation," Econometric Society World Congress 2000 Contributed Papers 0099, Econometric Society.
    6. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    7. Joris Pinkse & Margaret E. Slade & Craig Brett, 2002. "Spatial Price Competition: A Semiparametric Approach," Econometrica, Econometric Society, vol. 70(3), pages 1111-1153, May.
    8. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    9. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    10. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    11. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    12. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    13. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    14. Jeffrey P. Cohen & Catherine J. Morrison Paul, 2004. "Public Infrastructure Investment, Interstate Spatial Spillovers, and Manufacturing Costs," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 551-560, May.
    15. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    16. Baltagi, Badi H. & Egger, Peter & Pfaffermayr, Michael, 2007. "Estimating models of complex FDI: Are there third-country effects?," Journal of Econometrics, Elsevier, vol. 140(1), pages 260-281, September.
    17. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    18. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    19. Audretsch, David B & Feldman, Maryann P, 1996. "R&D Spillovers and the Geography of Innovation and Production," American Economic Review, American Economic Association, vol. 86(3), pages 630-640, June.
    20. Harald Badinger & Peter Egger, 2008. "Intra- and Inter-Industry Productivity Spillovers in OECD Manufacturing: A Spatial Econometric Perspective," CESifo Working Paper Series 2181, CESifo.
    21. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    22. Shroder, Mark, 1995. "Games the States Don't Play: Welfare Benefits and the Theory of Fiscal Federalism," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 183-191, February.
    23. Case, Anne C. & Rosen, Harvey S. & Hines, James Jr., 1993. "Budget spillovers and fiscal policy interdependence : Evidence from the states," Journal of Public Economics, Elsevier, vol. 52(3), pages 285-307, October.
    24. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    25. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    26. Jeffrey P. Cohen & Catherine Morrison Paul, 2007. "The Impacts Of Transportation Infrastructure On Property Values: A Higher‐Order Spatial Econometrics Approach," Journal of Regional Science, Wiley Blackwell, vol. 47(3), pages 457-478, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    2. Harald Badinger & Peter Egger, 2009. "Estimation of Higher-Order Spatial Autoregressive Panel Data Error Component Models," CESifo Working Paper Series 2556, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    2. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    3. Harald Badinger & Peter Egger, 2009. "Estimation of Higher-Order Spatial Autoregressive Panel Data Error Component Models," CESifo Working Paper Series 2556, CESifo.
    4. David M. Drukker & Peter Egger & Ingmar R. Prucha, 2013. "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 686-733, August.
    5. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    6. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    7. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    8. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    9. repec:asg:wpaper:1013 is not listed on IDEAS
    10. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    11. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    12. repec:rri:wpaper:201302 is not listed on IDEAS
    13. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    14. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    15. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    16. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    17. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    18. Joris Pinkse & Margaret E. Slade, 2010. "The Future Of Spatial Econometrics," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 103-117, February.
    19. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    20. repec:asg:wpaper:1045 is not listed on IDEAS
    21. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    22. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    23. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.

    More about this item

    Keywords

    higher-order spatial dependence; heteroskedasticity; two-stages least squares; generalized moments estimation; asymptotics;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_2356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.