IDEAS home Printed from https://ideas.repec.org/p/cdl/econwp/qt9vt997qn.html
   My bibliography  Save this paper

Simple Local Polynomial Density Estimators

Author

Listed:
  • Cattaneo, Matias D
  • Jansson, Michael
  • Ma, Xinwei

Abstract

This article introduces an intuitive and easy-to-implement nonparametric density estimator based on local polynomial techniques. The estimator is fully boundary adaptive and automatic, but does not require prebinning or any other transformation of the data. We study the main asymptotic properties of the estimator, and use these results to provide principled estimation, inference, and bandwidth selection methods. As a substantive application of our results, we develop a novel discontinuity in density testing procedure, an important problem in regression discontinuity designs and other program evaluation settings. An illustrative empirical application is given. Two companion Stata and R software packages are provided.

Suggested Citation

  • Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2020. "Simple Local Polynomial Density Estimators," Department of Economics, Working Paper Series qt9vt997qn, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
  • Handle: RePEc:cdl:econwp:qt9vt997qn
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9vt997qn.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.
    2. McCrary, Justin, 2008. "Manipulation of the running variable in the regression discontinuity design: A density test," Journal of Econometrics, Elsevier, vol. 142(2), pages 698-714, February.
    3. Jens Ludwig & Douglas L. Miller, 2007. "Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(1), pages 159-208.
    4. Burt S. Barnow & Matias D. Cattaneo & Rocío Titiunik & Gonzalo Vazquez‐Bare, 2017. "Comparing Inference Approaches for RD Designs: A Reexamination of the Effect of Head Start on Child Mortality," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 36(3), pages 643-681, June.
    5. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    2. Matias D. Cattaneo & Luke Keele & Rocio Titiunik, 2023. "A Guide to Regression Discontinuity Designs in Medical Applications," Papers 2302.07413, arXiv.org, revised May 2023.
    3. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    4. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Rocío Titiunik, 2019. "Regression Discontinuity Designs Using Covariates," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 442-451, July.
    5. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    6. De Benedetto, Marco Alberto & De Paola, Maria, 2019. "Term limit extension and electoral participation. Evidence from a diff-in-discontinuities design at the local level in Italy," European Journal of Political Economy, Elsevier, vol. 59(C), pages 196-211.
    7. Deng, Taotao & Hu, Yukun & Ma, Mulan, 2019. "Regional policy and tourism: A quasi-natural experiment," Annals of Tourism Research, Elsevier, vol. 74(C), pages 1-16.
    8. Kettlewell, Nathan & Siminski, Peter, 2020. "Optimal Model Selection in RDD and Related Settings Using Placebo Zones," IZA Discussion Papers 13639, Institute of Labor Economics (IZA).
    9. Onda, Masayuki & Seyler, Edward, 2020. "English learners reclassification and academic achievement: Evidence from Minnesota," Economics of Education Review, Elsevier, vol. 79(C).
    10. Eibich, Peter & Siedler, Thomas, 2020. "Retirement, intergenerational time transfers, and fertility," European Economic Review, Elsevier, vol. 124(C).
    11. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    12. Dong, Yingying, 2010. "Jumpy or Kinky? Regression Discontinuity without the Discontinuity," MPRA Paper 25461, University Library of Munich, Germany.
    13. Dionissi Aliprantis, 2017. "Assessing the evidence on neighborhood effects from Moving to Opportunity," Empirical Economics, Springer, vol. 52(3), pages 925-954, May.
    14. Gary Cornwall & Beau Sauley, 2021. "Indirect effects and causal inference: reconsidering regression discontinuity," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-28, December.
    15. De Benedetto, Marco Alberto, 2018. "Quality of Politicians and Electoral System. Evidence from a Quasi-experimental Design for Italian Cities," MPRA Paper 89511, University Library of Munich, Germany.
    16. Arteaga, Irma & Heflin, Colleen & Gable, Sara, 2016. "The impact of aging out of WIC on food security in households with children," Children and Youth Services Review, Elsevier, vol. 69(C), pages 82-96.
    17. Federico Cingano & Filippo Palomba & Paolo Pinotti & Enrico Rettore, 2022. "Making Subsidies Work: Rules vs. Discretion," CESifo Working Paper Series 9560, CESifo.
    18. Britto, Diogo G.C. & Fiorin, Stefano, 2020. "Corruption and legislature size: Evidence from Brazil," European Journal of Political Economy, Elsevier, vol. 65(C).
    19. Potrafke, Niklas & Roesel, Felix, 2020. "The urban–rural gap in healthcare infrastructure: does government ideology matter?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 54(3), pages 340-351.
    20. Mellace, Giovanni & Ventura, Marco, 2019. "Intended and unintended effects of public incentives for innovation. Quasi-experimental evidence from Italy," Discussion Papers on Economics 9/2019, University of Southern Denmark, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:econwp:qt9vt997qn. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/ibbrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.