IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/9910.html
   My bibliography  Save this paper

Economic and Statistical Measures of Forecast Accuracy

Author

Listed:
  • Granger, C.W.J.
  • Pesaran, M. H.

Abstract

This paper argues in favour of a closer link between decision and forecast evaluation problems. Although the idea of using decision theory for forecast evaluation appears early in the dynamic stochastic programming literature, and has continued to be used in meteorological forecasts, it is hardly mentioned in standard academic textbooks on economic forecasting. Some of the main issues involved are illustrated in the context of a two-state, two-action decision problem as well as in a more general setting. Relationships between statistical and economic methods of forecast evaluation are discussed and useful links between Kuipers score, used as a measure of forecast accuracy in the meteorology literature, and the market timing tests used in finance, are established. An empirical application to the problem of stock market predictability is also provided, and the conditions under which such predictability could be exploited in the presence of transaction costs are discussed.

Suggested Citation

  • Granger, C.W.J. & Pesaran, M. H., 1999. "Economic and Statistical Measures of Forecast Accuracy," Cambridge Working Papers in Economics 9910, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:9910
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/faculty/pesaran/gp1999.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    2. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    3. Granger, C.W.J. & Pesaran, H., 1996. "A Decision_Theoretic Approach to Forecast Evaluation," Cambridge Working Papers in Economics 9618, Faculty of Economics, University of Cambridge.
    4. Weiss, Andrew A, 1996. "Estimating Time Series Models Using the Relevant Cost Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 539-560, Sept.-Oct.
    5. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    6. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    7. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    8. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
    9. Pesaran, M.H. & Timmermann, A., 1992. "Forecasting Stock Returns," Cambridge Working Papers in Economics 9216, Faculty of Economics, University of Cambridge.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Granger, Clive W. J., 1992. "Forecasting stock market prices: Lessons for forecasters," International Journal of Forecasting, Elsevier, vol. 8(1), pages 3-13, June.
    12. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    13. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    14. Black, Angela & Fraser, Patricia, 1995. "U.K. Stock Returns: Predictability and Business Conditions," The Manchester School of Economic & Social Studies, University of Manchester, vol. 63(0), pages 85-102, Suppl..
    15. Clare, A D & Thomas, S H & Wickens, M R, 1994. "Is the Gilt-Equity Yield Ratio Useful for Predicting UK Stock Returns?," Economic Journal, Royal Economic Society, vol. 104(423), pages 303-315, March.
    16. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    17. Balvers, Ronald J & Cosimano, Thomas F & McDonald, Bill, 1990. "Predicting Stock Returns in an Efficient Market," Journal of Finance, American Finance Association, vol. 45(4), pages 1109-1128, September.
    18. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Bojke & Karl Claxton & Stephen Palmer & Mark Sculpher, 2006. "Defining and characterising structural uncertainty in decision analytic models," Working Papers 009cherp, Centre for Health Economics, University of York.
    2. Anthony Garratt & Gary Koop & ShaunP. Vahey, 2008. "Forecasting Substantial Data Revisions in the Presence of Model Uncertainty," Economic Journal, Royal Economic Society, vol. 118(530), pages 1128-1144, July.
    3. Pesaran, Hashem & Timmermann, Allan, 2005. "Real-Time Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 212-231, February.
    4. Kargin, Vladislav, 2002. "Value investing in emerging markets: risks and benefits," Emerging Markets Review, Elsevier, vol. 3(3), pages 233-244, September.
    5. Roch, Oriol, 2013. "Histogram-based prediction of directional price relatives," Finance Research Letters, Elsevier, vol. 10(3), pages 110-115.
    6. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    7. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    8. Jean-Louis Bertrand & Xavier Brusset, 2018. "Managing the financial consequences of weather variability," Journal of Asset Management, Palgrave Macmillan, vol. 19(5), pages 301-315, September.
    9. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    10. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    11. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    12. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
    13. Bertrand, Jean-Louis & Brusset, Xavier & Chabot, Miia, 2021. "Protecting franchise chains against weather risk: A design science approach," Journal of Business Research, Elsevier, vol. 125(C), pages 187-200.
    14. Clements, Michael P, 2006. "Internal consistency of survey respondents.forecasts : Evidence based on the Survey of Professional Forecasters," The Warwick Economics Research Paper Series (TWERPS) 772, University of Warwick, Department of Economics.
    15. Garrat, A. & Lee, K. & Pesaran, M.H. & Shin, Y., 2000. "Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy," Cambridge Working Papers in Economics 0004, Faculty of Economics, University of Cambridge.
    16. Timmermann, Allan & Elliott, Graham & Komunjer, Ivana, 2003. "Estimating Loss Function Parameters," CEPR Discussion Papers 3821, C.E.P.R. Discussion Papers.
    17. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    18. Kajal Lahiri, Wenxiong Yao, and Peg Young, 2003. "Cycles in the Transportation Sector and the Aggregate Economy," Discussion Papers 03-14, University at Albany, SUNY, Department of Economics.
    19. Thomakos, Dimitrios D. & Wang, Tao, 2010. "'Optimal' probabilistic and directional predictions of financial returns," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 102-119, January.
    20. Anthony Garratt & Kevin Lee, 2006. "Investing Under Model Uncertainty: Decision Based Evaluation of Exchange Rate and Interest Rate Forecasts in the US, UK and Japan," Birkbeck Working Papers in Economics and Finance 0616, Birkbeck, Department of Economics, Mathematics & Statistics.
    21. Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
    22. Papastamos, Dimitrios & Matysiak, George & Stevenson, Simon, 2015. "Assessing the accuracy and dispersion of real estate investment forecasts," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 141-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    2. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    3. Pesaran, M.H., 2010. "Predictability of Asset Returns and the Efficient Market Hypothesis," Cambridge Working Papers in Economics 1033, Faculty of Economics, University of Cambridge.
    4. Jeffrey Jarrett & Eric Kyper, 2006. "Capital market efficiency and the predictability of daily returns," Applied Economics, Taylor & Francis Journals, vol. 38(6), pages 631-636.
    5. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    6. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    8. Neil Kellard & John Nankervis & Fotis Papadimitriou, 2007. "Predicting the UK Equity Premium with Dividend Ratios: An Out-Of-Sample Recursive Residuals Graphical Approach," Money Macro and Finance (MMF) Research Group Conference 2006 129, Money Macro and Finance Research Group.
    9. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    10. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    11. M. Hashem Pesaran, 2005. "Market Efficiency Today," IEPR Working Papers 05.41, Institute of Economic Policy Research (IEPR).
    12. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    13. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    14. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    15. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    16. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    17. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    18. Skouras, Spyros, 2007. "Decisionmetrics: A decision-based approach to econometric modelling," Journal of Econometrics, Elsevier, vol. 137(2), pages 414-440, April.
    19. McMillan, David G., 2001. "Nonlinear predictability of stock market returns: Evidence from nonparametric and threshold models," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 353-368, December.
    20. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.

    More about this item

    Keywords

    Decision theory; Forecast evaluation; Probabilistsic forecasts; Economic and statistical measures of forecast accuracy; Stock market predictability;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:9910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.