IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2407.html
   My bibliography  Save this paper

Forecasting epidemic trajectories: Time Series Growth Curves package tsgc

Author

Listed:
  • Ashby, M.
  • Harvey, A.
  • Kattuman, P.
  • Thamotheram, C.

Abstract

This paper documents the Time Series Growth Curves (tsgc) package for R, which is designed for forecasting epidemics, including the detection of new waves and turning points. The package implements time series growth curve methods founded on a dynamic Gompertz model and can be estimated using techniques based on state space models and the Kalman filter. The model is suitable for predicting future values of any variable which, when cumulated, is subject to some unknown saturation level. In the context of epidemics, the model can adjust to changes in social behavior and policy. It is also relevant for many other domains, such as the diffusion of new products. The tsgc package is demonstrated using data on COVID-19 confirmed cases.

Suggested Citation

  • Ashby, M. & Harvey, A. & Kattuman, P. & Thamotheram, C., 2024. "Forecasting epidemic trajectories: Time Series Growth Curves package tsgc," Cambridge Working Papers in Economics 2407, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2407
    Note: mwa22, ach34, pak13
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2407.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    3. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    4. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    5. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    6. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    7. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    8. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    10. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    11. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    12. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    13. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    14. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    15. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    16. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    17. Omar H. M. N. Bashar, 2015. "The Trickle‐down Effect of the Mining Boom in Australia: Fact or Myth?," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 94-108, June.
    18. Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
    19. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.

    More about this item

    Keywords

    Covid-19; Gompertz growth curve; Kalman filter; reproduction number; state space model; stochastic trend; turning points;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • I10 - Health, Education, and Welfare - - Health - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.