IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1819.html
   My bibliography  Save this paper

Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement

Author

Listed:
  • Grubb, M.
  • Mercure, J.
  • Salas, P.
  • Lange, R.

Abstract

This paper develops a stylised mathematical interpretation of innovation and inertia in economic systems, characteristics which feature in economics literature traceable back at least to Schumpeter and other economic theorists of innovation, as well as economic historians. Such characteristics are particularly important in energy systems and their potential response to climate change, where it is important to distinguish operational/fuel substitution from investment because the latter necessarily embodies both inertia and innovation, in systems as well as technologies. We argue that integrated assessments of climate abatement need to focus on investment, including the associated characteristics of both learning and inertia, and derive in detail the mathematical basis for incorporating these factors through marginal investment cost curves. From this we also introduce the concept of ‘pliability’ as an expression of the ratio between costs which are significant but transitional (including learning investments, infrastructure and overcoming inertia), as compared to the enduring costs implied by purely exogenous technology assumptions. We then incorporate these features in a global model of optimal climate mitigation and show that they can generate a very different profile and pattern of results from traditional ‘integrated assessment’ models, pinpointing the key sensitivities. We conclude that alongside all the attention devoted to evaluating climate change impacts and technology scenarios, far more effort should be devoted to understanding the structural characteristics of how the global energy system may respond to climate change mitigation.

Suggested Citation

  • Grubb, M. & Mercure, J. & Salas, P. & Lange, R., 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Cambridge Working Papers in Economics 1819, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1819
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1819.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Murphy, Rose & Jaccard, Mark, 2011. "Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US," Energy Policy, Elsevier, vol. 39(11), pages 7146-7155.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    5. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    6. Chris Hope, 2013. "Critical issues for the calculation of the social cost of CO 2 : why the estimates from PAGE09 are higher than those from PAGE2002," Climatic Change, Springer, vol. 117(3), pages 531-543, April.
    7. Jean-François Mercure, 2015. "An age structured demographic theory of technological change," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 787-820, September.
    8. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    9. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    10. Winston Harrington & Richard D. Morgenstern & Peter Nelson, 2000. "On the accuracy of regulatory cost estimates," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 297-322.
    11. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    12. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    13. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    14. Raouf Boucekkine & David de la Croix & Omar Licandro, 2006. "Vintage Capital," Economics Working Papers ECO2006/8, European University Institute.
    15. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    16. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    17. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    18. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    19. Antonin Pottier & J.C Hourcade & E. Espagne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Post-Print hal-01523021, HAL.
    20. Schumpeter, Joseph A., 1947. "The Creative Response in Economic History," The Journal of Economic History, Cambridge University Press, vol. 7(2), pages 149-159, November.
    21. James Hammitt, 2000. "Are The Costs of Proposed Environmental Regulations Overestimated? Evidence from the CFC Phaseout," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(3), pages 281-302, July.
    22. Ottmar Edenhofer & Kai Lessmann & Claudia Kemfert & Michael Grubb & Jonathan Köhler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the innovation Modeling Comparison Project," The Energy Journal, , vol. 27(1_suppl), pages 57-108, January.
    23. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    24. Semmler, Willi, 2015. "The Oxford Handbook of the Macroeconomics of Global Warming," OUP Catalogue, Oxford University Press, number 9780199856978 edited by Bernard, Lucas.
    25. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    26. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    27. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    28. Jonathan Kohler, Michael Grubb, David Popp and Ottmar Edenhofer, 2006. "The Transition to Endogenous Technical Change in Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 17-56.
    29. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    30. Michael Grubb, Carlo Carraro and John Schellnhuber, 2006. "Technological Change for Atmospheric Stabilization: Introductory Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-16.
    31. Raouf Boucekkine & David de la Croix & Omar Licandro, 2011. "Vintage capital growth theory: Three breakthroughs," UFAE and IAE Working Papers 875.11, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    32. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    33. Gritsevskyi, Andrii & Nakicenovi, Nebojsa, 2000. "Modeling uncertainty of induced technological change," Energy Policy, Elsevier, vol. 28(13), pages 907-921, November.
    34. Bashmakov, Igor, 2007. "Three laws of energy transitions," Energy Policy, Elsevier, vol. 35(7), pages 3583-3594, July.
    35. R. M. Solow & J. Tobin & C. C. Weizsäcker & M. Yaari, 1971. "Neoclassical Growth with Fixed Factor Proportions," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 9, pages 68-102, Palgrave Macmillan.
    36. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, December.
    37. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    38. Frank W. Geels, 2005. "Technological Transitions and System Innovations," Books, Edward Elgar Publishing, number 3576.
    39. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    40. Ackerman, Frank & Munitz, Charles, 2012. "Climate damages in the FUND model: A disaggregated analysis," Ecological Economics, Elsevier, vol. 77(C), pages 219-224.
    41. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    42. Raouf Boucekkine & David de la Croix & Omar Licandro, 2011. "Vintage capital growth theory: Three breakthroughs," UFAE and IAE Working Papers 875.11, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    43. H. Peyton Young, 2009. "Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning," American Economic Review, American Economic Association, vol. 99(5), pages 1899-1924, December.
    44. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    45. Alberth, Stephan & Hope, Chris, 2007. "Climate modelling with endogenous technical change: Stochastic learning and optimal greenhouse gas abatement in the PAGE2002 model," Energy Policy, Elsevier, vol. 35(3), pages 1795-1807, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Grubb & Rutger-Jan Lange & Nicolas Cerkez & Pablo Salas & Ida Sognnaes, 2020. "Interactions of time and technology as critical determinants of optimal climate change policy," Tinbergen Institute Discussion Papers 20-083/VI, Tinbergen Institute, revised 29 Dec 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baldwin, Elizabeth & Cai, Yongyang & Kuralbayeva, Karlygash, 2020. "To build or not to build? Capital stocks and climate policy∗," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    2. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    3. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    4. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    5. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    6. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    7. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    8. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    9. Cristiano Antonelli & Federico Barbiellini Amidei, 2011. "The Dynamics of Knowledge Externalities," Books, Edward Elgar Publishing, number 13292.
    10. Jean-François Mercure, 2015. "An age structured demographic theory of technological change," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 787-820, September.
    11. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    12. Oliver Bettis & Simon Dietz & Nick Silver, 2015. "The risk of climate ruin," GRI Working Papers 217, Grantham Research Institute on Climate Change and the Environment.
    13. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    14. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    15. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    16. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    17. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    18. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    19. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    20. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.

    More about this item

    Keywords

    Innovation; path dependence; inertia; learning by doing; climate change abatement; endogenous technological change; energy systems;
    All these keywords.

    JEL classification:

    • B52 - Schools of Economic Thought and Methodology - - Current Heterodox Approaches - - - Historical; Institutional; Evolutionary; Modern Monetary Theory;
    • L50 - Industrial Organization - - Regulation and Industrial Policy - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.