IDEAS home Printed from https://ideas.repec.org/p/bny/wpaper/0028.html
   My bibliography  Save this paper

Efficient Perturbation Methods for Solving Regime-Switching DSGE Models

Author

Listed:
  • Junior Maih

Abstract

In an environment where economic structures break, variances change, distributions shift, conventional policies weaken and past events tend to reoccur, economic agents have to form expectations over different regimes. This makes the regime-switching dynamic stochastic general equilibrium (RS-DSGE) model the natural framework for analyzing the dynamics of macroeconomic variables. We present efficient solution methods for solving this class of models, allowing for the transition probabilities to be endogenous and for agents to react to anticipated events. The solution algorithms derived use a perturbation strategy which, unlike what has been proposed in the literature, does not rely on the partitioning of the switching parameters. These algorithms are all implemented in RISE, a flexible object-oriented toolbox that can easily integrate alternative solution methods. We show that our algorithms replicate various examples found in the literature. Among those is a switching RBC model for which we present a third-order perturbation solution.

Suggested Citation

  • Junior Maih, 2014. "Efficient Perturbation Methods for Solving Regime-Switching DSGE Models," Working Papers No 10/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  • Handle: RePEc:bny:wpaper:0028
    as

    Download full text from publisher

    File URL: https://www.bi.edu/globalassets/forskning/camp/working-papers/2014/working_camp_10-2014.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. S Borağan Aruoba & Pablo Cuba-Borda & Frank Schorfheide, 2018. "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(1), pages 87-118.
    2. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    3. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    4. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    5. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    6. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    7. Barthélemy, J. & Marx, M., 2011. "State-Dependent Probability Distributions in Non Linear Rational Expectations Models," Working papers 347, Banque de France.
    8. OndŘej KamenÍk, 2005. "Solving SDGE Models: A New Algorithm for the Sylvester Equation," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 167-187, February.
    9. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    10. Juillard Michel, 2011. "Local approximation of DSGE models around the risky steady state," wp.comunite 0087, Department of Communication, University of Teramo.
    11. Noah Williams & Lars E.O. Svensson, 2005. "Monetary Policy with Model Uncertainty: Distribution Forecast Targeting," Computing in Economics and Finance 2005 108, Society for Computational Economics.
    12. Junior Maih, 2010. "Conditional forecasts in DSGE models," Working Paper 2010/07, Norges Bank.
    13. Andrew Binning, 2013. "Third-order approximation of dynamic models without the use of tensors," Working Paper 2013/13, Norges Bank.
    14. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
    15. Troy Davig & Eric M. Leeper, 2007. "Fluctuating Macro Policies and the Fiscal Theory," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 247-316, National Bureau of Economic Research, Inc.
    16. Davig, Troy & Leeper, Eric M. & Walker, Todd B., 2011. "Inflation and the fiscal limit," European Economic Review, Elsevier, vol. 55(1), pages 31-47, January.
    17. Alexander Richter & Nathaniel Throckmorton & Todd Walker, 2014. "Accuracy, Speed and Robustness of Policy Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 445-476, December.
    18. Cho, Seonghoon & Moreno, Antonio, 2011. "The forward method as a solution refinement in rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 257-272, March.
    19. repec:hal:wpspec:info:hdl:2441/c8dmi8nm4pdjkuc9g704ld0h3 is not listed on IDEAS
    20. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    21. Farmer, Roger E.A. & Waggoner, Daniel F. & Zha, Tao, 2011. "Minimal state variable solutions to Markov-switching rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2150-2166.
    22. Lars E.O. Svensson & Noah Williams, 2009. "Optimal Monetary Policy under Uncertainty in DSGE Models: A Markov Jump-Linear-Quadratic Approach," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 3, pages 077-114, Central Bank of Chile.
    23. Nicolas Coeurdacier & Helene Rey & Pablo Winant, 2011. "The Risky Steady State," American Economic Review, American Economic Association, vol. 101(3), pages 398-401, May.
    24. Andrew Binning, 2013. "Solving second and third-order approximations to DSGE models: A recursive Sylvester equation solution," Working Paper 2013/18, Norges Bank.
    25. Levintal, Oren, 2017. "Fifth-order perturbation solution to DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 1-16.
    26. repec:hal:spmain:info:hdl:2441/c8dmi8nm4pdjkuc9g704ld0h3 is not listed on IDEAS
    27. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    28. Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Maih, Junior & Mihoubi, Ferhat & Mutschler, Willi & Perendia, George & Pfeifer, Johannes & Ratto, Marco & Villemot, Sébasti, 2011. "Dynare: Reference Manual Version 4," Dynare Working Papers 1, CEPREMAP, revised Mar 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baele, Lieven & Bekaert, Geert & Cho, Seonghoon & Inghelbrecht, Koen & Moreno, Antonio, 2015. "Macroeconomic regimes," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 51-71.
    2. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    3. Farmer, Roger E.A. & Waggoner, Daniel F. & Zha, Tao, 2011. "Minimal state variable solutions to Markov-switching rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2150-2166.
    4. Borovicka, J. & Hansen, L.P., 2016. "Term Structure of Uncertainty in the Macroeconomy," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1641-1696, Elsevier.
    5. Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021. "Origins of monetary policy shifts: A New approach to regime switching in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    6. Cho, Seonghoon, 2021. "Determinacy and classification of Markov-switching rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    7. Barthélemy, Jean & Marx, Magali, 2017. "Solving endogenous regime switching models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 1-25.
    8. Andrew T. Foerster, 2016. "Monetary Policy Regime Switches And Macroeconomic Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(1), pages 211-230, February.
    9. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    10. Jesús Fernández-Villaverde, 2010. "The econometrics of DSGE models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(1), pages 3-49, March.
    11. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    12. Lhuissier, Stéphane & Zabelina, Margarita, 2015. "On the stability of Calvo-style price-setting behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 57(C), pages 77-95.
    13. Francesco Bianchi & Leonardo Melosi, 2018. "Constrained Discretion and Central Bank Transparency," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 187-202, March.
    14. Francesco Bianchi & Leonardo Melosi, 2017. "Escaping the Great Recession," American Economic Review, American Economic Association, vol. 107(4), pages 1030-1058, April.
    15. Binning, Andrew & Bjørnland, Hilde C. & Maih, Junior, 2019. "Is monetary policy always effective? Incomplete interest rate pass-through in a DSGE model," Working Paper 2019/22, Norges Bank.
    16. Sebastián Cadavid Sánchez, 2018. "Monetary policy and structural changes in Colombia, 1990-2016: A Markov Switching approach," Documentos CEDE 16970, Universidad de los Andes, Facultad de Economía, CEDE.
    17. Xiaoshan Chen & Ronald Macdonald, 2012. "Realized and Optimal Monetary Policy Rules in an Estimated Markov‐Switching DSGE Model of the United Kingdom," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(6), pages 1091-1116, September.
    18. Liu, Zheng & Waggoner, Daniel F. & Zha, Tao, 2007. "Asymmetric Expectation Effects of Regime Shifts and the Great Moderation," Kiel Working Papers 1357, Kiel Institute for the World Economy (IfW Kiel).
    19. Boris Blagov, 2018. "Financial crises and time-varying risk premia in a small open economy: a Markov-switching DSGE model for Estonia," Empirical Economics, Springer, vol. 54(3), pages 1017-1060, May.
    20. Galvão, Ana Beatriz & Giraitis, Liudas & Kapetanios, George & Petrova, Katerina, 2016. "A time varying DSGE model with financial frictions," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 690-716.

    More about this item

    Keywords

    DSGE; Markov switching; Sylvester equation; Newton algorithm; perturbation; matrix polynomial;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bny:wpaper:0028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helene Olsen (email available below). General contact details of provider: https://edirc.repec.org/data/cambino.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.