Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Orphanides, Athanasios & van Norden, Simon, 2005.
"The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
- Athanasios Orphanides & Simon van Norden, 2003. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CIRANO Working Papers 2003s-01, CIRANO.
- Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CEPR Discussion Papers 4830, C.E.P.R. Discussion Papers.
- Athanasios Orphanides & Simon van Norden, 2004. "The reliability of inflation forecasts based on output gap estimates in real time," Finance and Economics Discussion Series 2004-68, Board of Governors of the Federal Reserve System (U.S.).
- Blanchard, Olivier Jean & Quah, Danny, 1989.
"The Dynamic Effects of Aggregate Demand and Supply Disturbances,"
American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
- Olivier Jean Blanchard & Danny Quah, 1988. "The Dynamic Effects of Aggregate Demand and Supply Disturbance," Working papers 497, Massachusetts Institute of Technology (MIT), Department of Economics.
- Olivier Jean Blanchard & Danny Quah, 1988. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," NBER Working Papers 2737, National Bureau of Economic Research, Inc.
- Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-987, December.
- repec:bla:germec:v:8:y:2007:i::p:375-398 is not listed on IDEAS
- Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003.
"The Use and Abuse of Real-Time Data in Economic Forecasting,"
The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
- Sheila Dolmas & Evan F. Koenig & Jeremy M. Piger, 2000. "The use and abuse of \"real-time\" data in economic forecasting," Working Papers 0004, Federal Reserve Bank of Dallas.
- Sheila Dolmas & Evan F. Koenig & Jeremy M. Piger, 2002. "The use and abuse of 'real-time' data in economic forecasting," Working Papers 2001-015, Federal Reserve Bank of St. Louis.
- Sheila Dolmas & Evan F. Koenig & Jeremy M. Piger, 2000. "The use and abuse of \"real-time\" data in economic forecasting," International Finance Discussion Papers 684, Board of Governors of the Federal Reserve System (U.S.).
- Mr. Andrew J Tiffin, 2016. "Seeing in the Dark: A Machine-Learning Approach to Nowcasting in Lebanon," IMF Working Papers 2016/056, International Monetary Fund.
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Marcos Álvarez-Díaz & Rangan Gupta, 2015. "Forecasting the US CPI: Does Nonlinearity Matter?," Working Papers 201512, University of Pretoria, Department of Economics.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Muhammad Nadim Hanif & Khurrum S. Mughal & Javed Iqbal, 2018. "A Thick ANN Model for Forecasting Inflation," SBP Working Paper Series 99, State Bank of Pakistan, Research Department.
- Adriana Fernandez & Evan F. Koenig & Alex Nikolsko-Rzhevskyy, 2011. "A real-time historical database for the OECD," Globalization Institute Working Papers 96, Federal Reserve Bank of Dallas.
- Michael P. Clements & Ana Beatriz Galvao, 2009.
"Forecasting US output growth using leading indicators: an appraisal using MIDAS models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
- Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
- Jens Richard Clausen & Carsten-Patrick Meier, 2005.
"Did the Bundesbank Follow a Taylor Rule? An Analysis Based on Real-Time Data,"
Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 141(II), pages 213-246, June.
- Clausen, Jens R. & Meier, Carsten-Patrick, 2003. "Did the Bundesbank follow a Taylor rule? An analysis based on real-time data," Kiel Working Papers 1180, Kiel Institute for the World Economy (IfW Kiel).
- Jens R. Clausen & Carsten-Patrick Meier, 2003. "Did the Bundesbank Follow a Taylor Rule? An Analysis Based on Real-Time Data," IWP Discussion Paper Series 02/2003, Institute for Economic Policy, Cologne, Germany.
- Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Georgios Sermpinis & Charalampos Stasinakis & Konstantinos Theofilatos & Andreas Karathanasopoul, 2014. "Inflation and Unemployment Forecasting with Genetic Support Vector Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 471-487, September.
- Thomas R. Cook & Aaron Smalter Hall, 2017.
"Macroeconomic Indicator Forecasting with Deep Neural Networks,"
Research Working Paper
RWP 17-11, Federal Reserve Bank of Kansas City.
- Thomas Cook, 2019. "Macroeconomic Indicator Forecasting with Deep Neural Networks," 2019 Meeting Papers 402, Society for Economic Dynamics.
- Ramis Khbaibullin & Sergei Seleznev, 2020. "Stochastic Gradient Variational Bayes and Normalizing Flows for Estimating Macroeconomic Models," Bank of Russia Working Paper Series wps61, Bank of Russia.
- Stephan Sauer & Jan‐Egbert Sturm, 2007.
"Using Taylor Rules to Understand European Central Bank Monetary Policy,"
German Economic Review, Verein für Socialpolitik, vol. 8(3), pages 375-398, August.
- Sauer Stephan & Sturm Jan-Egbert, 2007. "Using Taylor Rules to Understand European Central Bank Monetary Policy," German Economic Review, De Gruyter, vol. 8(3), pages 375-398, August.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:181-190 is not listed on IDEAS
- Anders Bredahl Kock & Timo Teräsvirta, 2013. "Forecasting the Finnish Consumer Price Inflation Using Artificial Neural Network Models and Three Automated Model Selection Techniques," Finnish Economic Papers, Finnish Economic Association, vol. 26(1), pages 13-24, Spring.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Trivellato, Ugo & Rettore, Enrico, 1986. "Preliminary Data Errors and Their Impact on the Forecast Error of Simultaneous-Equations Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 445-453, October.
- Athanasios Orphanides, 2001.
"Monetary Policy Rules Based on Real-Time Data,"
American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
- Athanasios Orphanides, 1998. "Monetary policy rules based on real-time data," Finance and Economics Discussion Series 1998-03, Board of Governors of the Federal Reserve System (U.S.).
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Michael P. Clements & Ana Beatriz Galvão, 2011.
"Improving Real-time Estimates of Output Gaps and Inflation Trends with Multiple-vintage Models,"
Working Papers
678, Queen Mary University of London, School of Economics and Finance.
- Michael P. Clements & Ana Beatriz Galvão, 2011. "Improving Real-time Estimates of Output Gaps and Inflation Trends with Multiple-vintage Models," Working Papers 678, Queen Mary University of London, School of Economics and Finance.
- Dean Croushore, 2011.
"Frontiers of Real-Time Data Analysis,"
Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
- Dean Croushore, 2008. "Frontiers of real-time data analysis," Working Papers 08-4, Federal Reserve Bank of Philadelphia.
- Dean Croushore & Tom Stark, 2003.
"A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?,"
The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
- Dean Croushore & Tom Stark, 1999. "A real-time data set for marcoeconomists: does the data vintage matter?," Working Papers 99-21, Federal Reserve Bank of Philadelphia.
- M. Ali Choudhary & Adnan Haider, 2012.
"Neural network models for inflation forecasting: an appraisal,"
Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
- M. Ali Choudhary & Adnan Haider, 2012. "Neural network models for inflation forecasting: an appraisal," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
- Ali Choudhary & Adnan Haider, 2008. "Neural Network Models for Inflation Forecasting: An Appraisal," School of Economics Discussion Papers 0808, School of Economics, University of Surrey.
- M. Ali Choudhary, 2011. "Neural Network Models for Inflation Forecasting: An Appraisal," Post-Print hal-00704670, HAL.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005.
"The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
- Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
- Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Gerberding, Christina & Seitz, Franz & Worms, Andreas, 2005.
"How the Bundesbank really conducted monetary policy,"
The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 277-292, December.
- Christina Gerberding & Franz Seitz & Andreas Worms, 2005. "How the Bundesbank really conducted monetary policy," Computing in Economics and Finance 2005 60, Society for Computational Economics.
- Rosanne Cole, 1969. "Data Errors and Forecasting Accuracy," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 47-82, National Bureau of Economic Research, Inc.
- Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017.
"Predicting recessions with boosted regression trees,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
- Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions With Boosted Regression Trees," Working Papers 2015-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Finn E. Kydland & Edward C. Prescott, 1990. "Business cycles: real facts and a monetary myth," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 14(Spr), pages 3-18.
- Clements, Michael P. & Galvão, Ana Beatriz, 2013. "Forecasting with vector autoregressive models of data vintages: US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 29(4), pages 698-714.
- Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2022.
"A Real-Time Historical Database of Macroeconomic Indicators for Russia,"
Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 88-103, March.
- Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2021. "A Real-Time Historical Database of Macroeconomic Indicators for Russia," Bank of Russia Working Paper Series wps76, Bank of Russia.
- Domenico Giannone & Jérôme Henry & Magdalena Lalik & Michele Modugno, 2012.
"An Area-Wide Real-Time Database for the Euro Area,"
The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1000-1013, November.
- Giannone, Domenico & Henry, Jérôme & Lalik, Magdalena & Modugno, Michele, 2010. "An area-wide real-time database for the euro area," Working Paper Series 1145, European Central Bank.
- Henry, Jerome & Giannone, Domenico & Lalik, Magdalena & Modugno, Michele, 2010. "An Area-Wide Real-Time Database for the Euro Area," CEPR Discussion Papers 7673, C.E.P.R. Discussion Papers.
- Domenico Giannone & Jérôme Henry & Magdalena Lalik & Michèle Modugno, 2010. "An Area Wide Real Time Data Base for the Euro Area," Working Papers ECARES ECARES 2010-026, ULB -- Universite Libre de Bruxelles.
- Konstantin Styrin, 2019. "Forecasting Inflation in Russia Using Dynamic Model Averaging," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 3-18, March.
- Croushore, Dean & Stark, Tom, 2001.
"A real-time data set for macroeconomists,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
- Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
- Buchen, Teresa & Wohlrabe, Klaus, 2011.
"Forecasting with many predictors: Is boosting a viable alternative?,"
Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
- Buchen, Teresa & Wohlrabe, Klaus, 2010. "Forecasting with many predictors - Is boosting a viable alternative?," Discussion Papers in Economics 11788, University of Munich, Department of Economics.
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Tatevik Sekhposyan & Barbara Rossi, 2008.
"Has modelsí forecasting performance for US output growth and inflation changed over time, and when?,"
Working Papers
09-02, Duke University, Department of Economics.
- Barbara Rossi & Tatevik Sekhposyan, 2010. "Has Models' Forecasting Performance for US Output Growth and Inflation Changed over Time, and When?," Working Papers 10-16, Duke University, Department of Economics.
- Stark, Tom & Croushore, Dean, 2002.
"Forecasting with a real-time data set for macroeconomists,"
Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
- Dean Croushore & Tom Stark, 2001. "Forecasting with a real-time data set for macroeconomists," Working Papers 01-10, Federal Reserve Bank of Philadelphia.
- Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
- Egginton, Don M. & Pick, Andreas & Vahey, Shaun P., 2002.
"'Keep it real!': a real-time UK macro data set,"
Economics Letters, Elsevier, vol. 77(1), pages 15-20, September.
- Shaun P. Vahey & Andreas Pick & Don M. Egginton, 2001. ""Keep it real!": A real-time UK macro data set," Economics Bulletin, AccessEcon, vol. 28(18), pages 1.
- Egginton, Donald & Andreas Pick & Shaun P. Vahey, 2002. "Keep It Real!: A Real-time UK Macro Data Set," Royal Economic Society Annual Conference 2002 69, Royal Economic Society.
- James H. Stock & Mark W.Watson, 2003.
"Forecasting Output and Inflation: The Role of Asset Prices,"
Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
- James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
- Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
- McAdam, Peter & McNelis, Paul, 2005.
"Forecasting inflation with thick models and neural networks,"
Economic Modelling, Elsevier, vol. 22(5), pages 848-867, September.
- McAdam, Peter & McNelis, Paul, 2004. "Forecasting inflation with thick models and neural networks," Working Paper Series 352, European Central Bank.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Andrew J. Filardo, 1999. "How reliable are recession prediction models?," Economic Review, Federal Reserve Bank of Kansas City, vol. 84(Q II), pages 35-55.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2022.
"A Real-Time Historical Database of Macroeconomic Indicators for Russia,"
Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 88-103, March.
- Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2021. "A Real-Time Historical Database of Macroeconomic Indicators for Russia," Bank of Russia Working Paper Series wps76, Bank of Russia.
- Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
- Oleg Semiturkin & Andrey Shevelev, 2023. "Correct Comparison of Predictive Features of Machine Learning Models: The Case of Forecasting Inflation Rates in Siberia," Russian Journal of Money and Finance, Bank of Russia, vol. 82(1), pages 87-103, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rusnák, Marek, 2016.
"Nowcasting Czech GDP in real time,"
Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
- Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank.
- Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
- Adriana Fernandez & Evan F. Koenig & Alex Nikolsko-Rzhevskyy, 2011. "A real-time historical database for the OECD," Globalization Institute Working Papers 96, Federal Reserve Bank of Dallas.
- Dean Croushore, 2011.
"Frontiers of Real-Time Data Analysis,"
Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
- Dean Croushore, 2008. "Frontiers of real-time data analysis," Working Papers 08-4, Federal Reserve Bank of Philadelphia.
- Clements, Michael P. & Beatriz Galvão, Ana, 2010.
"First announcements and real economic activity,"
European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
- Clements, Michael P. & Beatriz Galvao, Ana, 2008. "First Announcements and Real Economic Activity," Economic Research Papers 271314, University of Warwick - Department of Economics.
- Clements, Michael P. & Galvão, Ana Beatriz, 2009. "First Announcements and Real Economic Activity," The Warwick Economics Research Paper Series (TWERPS) 885, University of Warwick, Department of Economics.
- Gregory E. Givens, 2017.
"Do Data Revisions Matter for DSGE Estimation?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(6), pages 1385-1407, September.
- Givens, Gregory, 2016. "Do data revisions matter for DSGE estimation?," MPRA Paper 70932, University Library of Munich, Germany.
- Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
- Liebermann, Joelle, 2012.
"Real-time forecasting in a data-rich environment,"
MPRA Paper
39452, University Library of Munich, Germany.
- Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Nikolsko-Rzhevskyy, Alex, 2008. "Monetary Policy Evaluation in Real Time: Forward-Looking Taylor Rules Without Forward-Looking Data," MPRA Paper 11352, University Library of Munich, Germany.
- Alex Nikolsko-Rzhevskyy, 2011.
"Monetary Policy Estimation in Real Time: Forward-Looking Taylor Rules without Forward-Looking Data,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 871-897, August.
- Alex Nikolsko‐Rzhevskyy, 2011. "Monetary Policy Estimation in Real Time: Forward‐Looking Taylor Rules without Forward‐Looking Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 871-897, August.
- Paolo Andreini & Donato Ceci, 2019. "A Horse Race in High Dimensional Space," CEIS Research Paper 452, Tor Vergata University, CEIS, revised 14 Feb 2019.
- Dean Croushore & Tom Stark, 2002. "Is macroeconomic research robust to alternative data sets?," Working Papers 02-3, Federal Reserve Bank of Philadelphia.
- Croushore, Dean & Evans, Charles L., 2006.
"Data revisions and the identification of monetary policy shocks,"
Journal of Monetary Economics, Elsevier, vol. 53(6), pages 1135-1160, September.
- Dean Croushore & Charles L. Evans, 2000. "Data revisions and the identification of monetary policy shocks," Working Paper Series WP-00-26, Federal Reserve Bank of Chicago.
- Dean Croushore & Charles L. Evans, 2003. "Data revisions and the identification of monetary policy shocks," Working Papers 03-1, Federal Reserve Bank of Philadelphia.
- Dean Croushore & Charles L. Evans, 2000. "Data Revisions and the Identification of Monetary Policy Shocks," Econometric Society World Congress 2000 Contributed Papers 0842, Econometric Society.
- Aastveit, Knut Are & Trovik, Tørres, 2014.
"Estimating the output gap in real time: A factor model approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
- Knut Are Aastveit & Tørres G. Trovik, 2008. "Estimating the output gap in real time: A factor model approach," Working Paper 2008/23, Norges Bank.
- Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Ronald Indergand & Stefan Leist, 2014. "A Real-Time Data Set for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 331-352, December.
- Clements, Michael P. & Galvao, Ana Beatriz, 2006.
"Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation,"
Economic Research Papers
269743, University of Warwick - Department of Economics.
- Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
More about this item
Keywords
inflation; pseudo real-time forecasting; data vintages; machine learning; neural networks.;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-04-26 (Big Data)
- NEP-CIS-2021-04-26 (Confederation of Independent States)
- NEP-CMP-2021-04-26 (Computational Economics)
- NEP-CWA-2021-04-26 (Central and Western Asia)
- NEP-FOR-2021-04-26 (Forecasting)
- NEP-ORE-2021-04-26 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:wpaper:wps70. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: BoR Research (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.