IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/950.html
   My bibliography  Save this paper

Should Central Banks Care About Text Mining? A Literature Review

Author

Listed:
  • Jean-Charles Bricongne
  • Baptiste Meunier
  • Raquel Caldeira

Abstract

As text mining has expanded in economics, central banks appear to also have ridden this wave, as we review use cases of text mining across central banks and supervisory institutions. Text mining is a polyvalent tool to gauge the economic outlook in which central banks operate, notably as an innovative way to measure inflation expectations. This is also a pivotal tool to assess risks to financial stability. Beyond financial markets, text mining can also help supervising individual financial institutions. As central banks increasingly consider issues such as the climate challenge, text mining also allows to assess the perception of climate-related risks and banks’ preparedness. Besides, the analysis of central banks’ communication provides a feedback tool on how to best convey decisions. Albeit powerful, text mining complements – rather than replaces – the usual indicators and procedures at central banks. Going forward, generative AI opens new frontiers for the use of textual data.

Suggested Citation

  • Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
  • Handle: RePEc:bfr:banfra:950
    as

    Download full text from publisher

    File URL: https://www.banque-france.fr/system/files/2024-06/WP950.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    2. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    3. Alan S. Blinder & Michael Ehrmann & Marcel Fratzscher & Jakob De Haan & David-Jan Jansen, 2008. "Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 910-945, December.
    4. DeFusco, Anthony & Ding, Wenjie & Ferreira, Fernando & Gyourko, Joseph, 2018. "The role of price spillovers in the American housing boom," Journal of Urban Economics, Elsevier, vol. 108(C), pages 72-84.
    5. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    6. Tatiana Evdokimova & Piroska Nagy Mohacsi & Olga Ponomarenko & Elina Ribakova, 2023. "Central banks and policy communication: How emerging markets have outperformed the Fed and ECB," Working Paper Series WP23-10, Peterson Institute for International Economics.
    7. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    8. Cindy K Soo, 2018. "Quantifying Sentiment with News Media across Local Housing Markets," The Review of Financial Studies, Society for Financial Studies, vol. 31(10), pages 3689-3719.
    9. Eric Fischer & Rebecca McCaughrin & Saketh Prazad & Mark Vandergon, 2023. "Fed Transparency and Policy Expectation Errors: A Text Analysis Approach," Staff Reports 1081, Federal Reserve Bank of New York.
    10. De Santis, Roberto A. & Van der Veken, Wouter, 2022. "Deflationary financial shocks and inflationary uncertainty shocks: an SVAR Investigation," Working Paper Series 2727, European Central Bank.
    11. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    12. Robert F Engle & Stefano Giglio & Bryan Kelly & Heebum Lee & Johannes Stroebel, 2020. "Hedging Climate Change News," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1184-1216.
    13. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "The Aftermath of Financial Crises," American Economic Review, American Economic Association, vol. 99(2), pages 466-472, May.
    14. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    15. Fontaine, Idriss & Didier, Laurent & Razafindravaosolonirina, Justinien, 2017. "Foreign policy uncertainty shocks and US macroeconomic activity: Evidence from China," Economics Letters, Elsevier, vol. 155(C), pages 121-125.
    16. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    17. Valerie A. Ramey, 2011. "Identifying Government Spending Shocks: It's all in the Timing," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 1-50.
    18. Istrefi, Klodiana & Odendahl, Florens & Sestieri, Giulia, 2023. "Fed communication on financial stability concerns and monetary policy decisions: Revelations from speeches," Journal of Banking & Finance, Elsevier, vol. 151(C).
    19. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    20. Bobasu, Alina & De Santis, Roberto A., 2022. "The impact of the Russian invasion of Ukraine on euro area activity via the uncertainty channel," Economic Bulletin Boxes, European Central Bank, vol. 4.
    21. Al-Haschimi, Alexander & Apostolou, Apostolos & Azqueta-Gavaldon, Andres & Ricci, Martino, 2023. "Using machine learning to measure financial risk in China," Working Paper Series 2767, European Central Bank.
    22. Albert Saiz & Uri Simonsohn, 2013. "Proxying For Unobservable Variables With Internet Document-Frequency," Journal of the European Economic Association, European Economic Association, vol. 11(1), pages 137-165, February.
    23. Menzie D. Chinn & Baptiste Meunier & Sebastian Stumpner, 2023. "Nowcasting World Trade with Machine Learning: a Three-Step Approach," NBER Working Papers 31419, National Bureau of Economic Research, Inc.
    24. Klodiana Istrefi & Florens Odendahl & Giulia Sestieri, 2022. "ECB Communication and its Impact on Financial Markets," Working papers 859, Banque de France.
    25. Bricongne, Jean-Charles & Meunier, Baptiste & Pouget, Sylvain, 2023. "Web-scraping housing prices in real-time: The Covid-19 crisis in the UK," Journal of Housing Economics, Elsevier, vol. 59(PB).
    26. Fernandez, Raul & Palma Guizar, Brenda & Rho, Caterina, 2021. "A sentiment-based risk indicator for the Mexican financial sector," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(3).
    27. Bua, Giovanna & Kapp, Daniel & Ramella, Federico & Rognone, Lavinia, 2022. "Transition versus physical climate risk pricing in European financial markets: a text-based approach," Working Paper Series 2677, European Central Bank.
    28. Menz, Jan-Oliver & Poppitz, Philipp, 2013. "Household`s Disagreement on Inflation Expectations and Socioeconomic Media Exposure in Germany," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80006, Verein für Socialpolitik / German Economic Association.
    29. Daniel J. Lewis & Karel Mertens & James H. Stock, 2020. "Monitoring Real Activity in Real Time: The Weekly Economic Index," Liberty Street Economics 20200330b, Federal Reserve Bank of New York.
    30. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    31. Ehrmann, Michael & Wabitsch, Alena, 2022. "Central bank communication with non-experts – A road to nowhere?," Journal of Monetary Economics, Elsevier, vol. 127(C), pages 69-85.
    32. Miguel Acosta, 2023. "A New Measure of Central Bank Transparency and Implications for the Effectiveness of Monetary Policy," International Journal of Central Banking, International Journal of Central Banking, vol. 19(3), pages 49-97, August.
    33. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    34. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    35. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
    36. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    37. Alan S. Blinder & Michael Ehrmann & Marcel Fratzscher & Jakob De Haan & David-Jan Jansen, 2008. "Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 910-945, December.
    38. Maximilian Ahrens & Deniz Erdemlioglu & Michael McMahon & Christopher J. Neely & Xiye Yang, 2023. "Mind Your Language: Market Responses to Central Bank Speeches," Working Papers 2023-013, Federal Reserve Bank of St. Louis, revised 28 Sep 2024.
    39. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    40. Hansen, Stephen & McMahon, Michael & Tong, Matthew, 2019. "The long-run information effect of central bank communication," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 185-202.
    41. Laurent Ferrara & Clément Marsilli, 2019. "Nowcasting global economic growth: A factor‐augmented mixed‐frequency approach," The World Economy, Wiley Blackwell, vol. 42(3), pages 846-875, March.
    42. Dikau, Simon & Volz, Ulrich, 2021. "Central bank mandates, sustainability objectives and the promotion of green finance," Ecological Economics, Elsevier, vol. 184(C).
    43. Cécile Couharde & Hamza Bennani & Yoan Wallois, 2021. "Do IMF Reports Affect Market Expectations ? A Sentiment Analysis Approach," Working Papers hal-04159751, HAL.
    44. Christopher D Carroll, 2001. "The Epidemiology of Macroeconomic Expectations," Economics Working Paper Archive 462, The Johns Hopkins University,Department of Economics.
    45. Colombo, Valentina, 2013. "Economic policy uncertainty in the US: Does it matter for the Euro area?," Economics Letters, Elsevier, vol. 121(1), pages 39-42.
    46. Lambertini, Luisa & Mendicino, Caterina & Punzi, Maria Teresa, 2013. "Expectation-driven cycles in the housing market: Evidence from survey data," Journal of Financial Stability, Elsevier, vol. 9(4), pages 518-529.
    47. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    48. Ghirelli, Corinna & Pérez, Javier J. & Urtasun, Alberto, 2019. "A new economic policy uncertainty index for Spain," Economics Letters, Elsevier, vol. 182(C), pages 64-67.
    49. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    50. Beber, Alessandro & Brandt, Michael W. & Luisi, Maurizio, 2015. "Distilling the macroeconomic news flow," Journal of Financial Economics, Elsevier, vol. 117(3), pages 489-507.
    51. McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
    52. Fernando D. Chague & Rodrigo De-Losso, Bruno C. Giovannetti, Paulo Manoel, 2013. "Central Bank Communication Affects Long-Term Interest Rates," Working Papers, Department of Economics 2013_07, University of São Paulo (FEA-USP).
    53. Peter, Eckley, 2015. "Measuring economic uncertainty using news-media textual data," MPRA Paper 64874, University Library of Munich, Germany, revised 01 May 2015.
    54. Angelico, Cristina & Marcucci, Juri & Miccoli, Marcello & Quarta, Filippo, 2022. "Can we measure inflation expectations using Twitter?," Journal of Econometrics, Elsevier, vol. 228(2), pages 259-277.
    55. Steven L. Scott & Hal R. Varian, 2015. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135, National Bureau of Economic Research, Inc.
    56. Mr. Ales Bulir & Mr. Martin Cihak & Mr. David-Jan Jansen, 2014. "Does the Clarity of Inflation Reports Affect Volatility in Financial Markets?," IMF Working Papers 2014/175, International Monetary Fund.
    57. Sun, Andrew & Lachanski, Michael & Fabozzi, Frank J., 2016. "Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 272-281.
    58. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    59. Smales, Lee A., 2023. "Classification of RBA monetary policy announcements using ChatGPT," Finance Research Letters, Elsevier, vol. 58(PC).
    60. repec:arz:wpaper:eres2015-3 is not listed on IDEAS
    61. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    62. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    63. Vegard H. Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Paper 2018/3, Norges Bank.
    64. Massimo Ferrari Minesso & Laura Lebastard & Helena Mezo, 2023. "Text-Based Recession Probabilities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 415-438, June.
    65. repec:pri:cepsud:161blinder is not listed on IDEAS
    66. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    67. Khaled AlAjmi & Jose Deodoro & Mr. Ashraf Khan & Kei Moriya, 2023. "Predicting the Law: Artificial Intelligence Findings from the IMF’s Central Bank Legislation Database," IMF Working Papers 2023/241, International Monetary Fund.
    68. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    69. Carretta, Alessandro & Farina, Vincenzo & Fiordelisi, Franco & Schwizer, Paola & Stentella Lopes, Francesco Saverio, 2015. "Don’t Stand So Close to Me: The role of supervisory style in banking stability," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 180-188.
    70. Karl E. Case & Robert J. Shiller, 2003. "Is There a Bubble in the Housing Market?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 34(2), pages 299-362.
    71. Tobback, Ellen & Naudts, Hans & Daelemans, Walter & Junqué de Fortuny, Enric & Martens, David, 2018. "Belgian economic policy uncertainty index: Improvement through text mining," International Journal of Forecasting, Elsevier, vol. 34(2), pages 355-365.
    72. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    73. Attinasi, Maria Grazia & Boeckelmann, Lukas & Meunier, Baptiste, 2023. "The economic costs of supply chain decoupling," Working Paper Series 2839, European Central Bank.
    74. Mariarosaria Comunale & Andrea Manera, 2024. "The Economic Impacts and the Regulation of AI: A Review of the Academic Literature and Policy Actions," IMF Working Papers 2024/065, International Monetary Fund.
    75. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    76. Jean-Charles Bricongne & Baptiste Meunier & Thomas Pical, 2021. "Can satellite data on air pollution predict industrial production?," Working papers 847, Banque de France.
    77. Jessica Roxanne Ruscheinsky & Marcel Lang & Wolfgang Schäfers, 2018. "Real estate media sentiment through textual analysis," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 36(5), pages 410-428, July.
    78. Patrick Bayer & Kyle Mangum & James W. Roberts, 2021. "Speculative Fever: Investor Contagion in the Housing Bubble," American Economic Review, American Economic Association, vol. 111(2), pages 609-651, February.
    79. Marian Alexander Dietzel, 2015. "Sentiment-Based Predictions of Housing Market Turning Points with Google Trends," ERES eres2015_3, European Real Estate Society (ERES).
    80. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    81. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    82. Michael Bailey & Ruiqing Cao & Theresa Kuchler & Johannes Stroebel, 2018. "The Economic Effects of Social Networks: Evidence from the Housing Market," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2224-2276.
    83. Ángel Iván Moreno Bernal & Teresa Caminero García, 2022. "Analysis of ESG disclosures in Pillar 3 reports. A text mining approach," Occasional Papers 2204, Banco de España.
    84. Jérôme Coffinet & Jean-Brieux Delbos & Jean-Noël Kien & Etienne Kintzler & Ariane Lestrade & Michel Mouliom & Théo Nicolas & Vojtech Kaiser, 2023. "Tracking the economy during the Covid-19 pandemic: the contribution of high frequency indicators," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    85. Leland Bybee, 2023. "Surveying Generative AI's Economic Expectations," Papers 2305.02823, arXiv.org, revised May 2023.
    86. Batten,, Sandra & Sowerbutts, Rhiannon & Tanaka, Misa, 2016. "Let’s talk about the weather: the impact of climate change on central banks," Bank of England working papers 603, Bank of England.
    87. Marcel Fischer & Michael Z. Stamos, 2013. "Optimal Life Cycle Portfolio Choice with Housing Market Cycles," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2311-2352.
    88. Carola Binder & Pei Kuang & Li Tang, 2023. "Central Bank Communication and House Price Expectations," NBER Working Papers 31232, National Bureau of Economic Research, Inc.
    89. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost & Marco C. Sammon & Tasaneeya Viratyosin, 2020. "The Unprecedented Stock Market Impact of COVID-19," NBER Working Papers 26945, National Bureau of Economic Research, Inc.
    90. Rambaccussing, Dooruj & Kwiatkowski, Andrzej, 2020. "Forecasting with news sentiment: Evidence with UK newspapers," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1501-1516.
    91. Attinasi, Maria Grazia & Boeckelmann, Lukas & Meunier, Baptiste, 2023. "Friend-shoring global value chains: a model-based assessment," Economic Bulletin Boxes, European Central Bank, vol. 2.
    92. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    93. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    94. Vegard H. Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Paper 2018/3, Norges Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    2. Dooruj Rambaccussing & Craig Menzies & Andrzej Kwiatkowski, 2022. "Look who’s Talking: Individual Committee members’ impact on inflation expectations," Dundee Discussion Papers in Economics 305, Economic Studies, University of Dundee.
    3. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
    4. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    5. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Perez & Elena Vidal, 2024. "Using Newspapers for Textual Indicators: Guidance Based on Spanish- and Portuguese-Speaking Countries," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 643-692, August.
    6. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Pérez & Elena Vidal, 2022. "Using newspapers for textual indicators: which and how many?," Working Papers 2235, Banco de España.
    7. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    8. Aguilar, Pablo & Ghirelli, Corinna & Pacce, Matías & Urtasun, Alberto, 2021. "Can news help measure economic sentiment? An application in COVID-19 times," Economics Letters, Elsevier, vol. 199(C).
    9. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    10. Dorinth van Dijk & Jasper de Winter, 2023. "Nowcasting GDP using tone-adjusted time varying news topics: Evidence from the financial press," Working Papers 766, DNB.
    11. Olivier De Bandt & Jean-Charles Bricongne & Julien Denes & Alexandre Dhenin & Annabelle De Gaye & Pierre-Antoine Robert, 2023. "Using the Press to Construct a New Indicator of Inflation Perceptions in France," Working papers 921, Banque de France.
    12. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    13. Dorine Boumans & Henrik Müller & Stefan Sauer, 2022. "How Media Content Influences Economic Expectations: Evidence from a Global Expert Survey," ifo Working Paper Series 380, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    14. Stolbov, Mikhail & Shchepeleva, Maria & Karminsky, Alexander, 2022. "When central bank research meets Google search: A sentiment index of global financial stress," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    15. Aprigliano, Valentina & Emiliozzi, Simone & Guaitoli, Gabriele & Luciani, Andrea & Marcucci, Juri & Monteforte, Libero, 2023. "The power of text-based indicators in forecasting Italian economic activity," International Journal of Forecasting, Elsevier, vol. 39(2), pages 791-808.
    16. Saskia Ter Ellen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "Narrative Monetary Policy Surprises and the Media," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1525-1549, August.
    17. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    18. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
    19. Saskia Ter Ellen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "Narrative Monetary Policy Surprises and the Media," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1525-1549, August.
    20. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.

    More about this item

    Keywords

    Text Mining; Sentiment Analysis; Central Banking; Generative AI; Language Models;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • L82 - Industrial Organization - - Industry Studies: Services - - - Entertainment; Media

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.