IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/917.html
   My bibliography  Save this paper

Nowcasting World Trade with Machine Learning: a Three-Step Approach

Author

Listed:
  • Menzie Chinn
  • Baptiste Meunier
  • Sebastian Stumpner

Abstract

We nowcast world trade using machine learning, distinguishing between tree-based methods (random forest, gradient boosting) and their regression-based counterparts (macroeconomic random forest, linear gradient boosting). While much less used in the literature, the latter are found to outperform not only the tree-based techniques, but also more “traditional” linear and non-linear techniques (OLS, Markov-switching, quantile regression). They do so significantly and consistently across different horizons and real-time datasets. To further improve performance when forecasting with machine learning, we propose a flexible three-step approach composed of (step 1) pre-selection, (step 2) factor extraction and (step 3) machine learning regression. We find that both pre-selection and factor extraction significantly improve the accuracy of machine-learning-based predictions. This three-step approach also outperforms workhorse benchmarks, such as a PCA-OLS model, an elastic net, or a dynamic factor model. Finally, on top of high accuracy, the approach is flexible and can be extended seamlessly beyond world trade.

Suggested Citation

  • Menzie Chinn & Baptiste Meunier & Sebastian Stumpner, 2023. "Nowcasting World Trade with Machine Learning: a Three-Step Approach," Working papers 917, Banque de France.
  • Handle: RePEc:bfr:banfra:917
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/dt917.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    2. Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
    3. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.

    More about this item

    Keywords

    Forecasting; Big Data; Large Dataset; Factor Model; Pre-Selection;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.