IDEAS home Printed from https://ideas.repec.org/p/bep/mchbio/1024.html
   My bibliography  Save this paper

Individualized predictions of disease progression following radiation therapy for prostate cancer

Author

Listed:
  • Jeremy Taylor

    (University of Michigan)

  • Menggang Yu

    (University of Michigan)

  • Howard Sandler

    (University of Michigan Radiation Oncology)

Abstract

Background: Following treatment for localized prostate cancer, men are monitored with serial PSA measurements. Refining the predictive value of post-treatment PSA determinations may add to clinical management and we have developed a model that predicts for an individual patient future PSA values and estimates the time to future clinical recurrence.Methods: Data from 934 patients treated for prostate cancer between 1987 and 2000 were used to develop a comprehensive statistical model to fit the clinical recurrence events and pattern of PSA data. A logistic regression model was used for the probability of cure, non-linear hierarchical mixed models were used for serial PSA measurements and a time-dependent proportional hazards model was used for recurrences. Data available up to February 2001 and September 2003 was used to assess the performance of the model.Results: The model suggests that T-stage, baseline PSA, and radiotherapy dosage are all associated with probability of cure. The risk of clinical recurrence in those not cured by radiotherapy is most strongly affected by the slope of the long-transformed PSA values. We show how the model can be used for individual monitoring of a patient's disease progression. For each patient the model predicts, based upon his baseline and all post-treatment PSA values, the probability of future clinical recurrence in the validation dataset and of 406 PSA measurements obtained 1-2 years after February 2001, 92.8% were within 95% prediction limits from the model.Conclusions: This statistical model presented accurately predicts future PSA values and risk of clinical relapse. This predictive information for each individual patient, which can be updated with each additional PSA value, may prove useful to patents and physicians in determining what post-treatment salvage should be employed.

Suggested Citation

  • Jeremy Taylor & Menggang Yu & Howard Sandler, 2004. "Individualized predictions of disease progression following radiation therapy for prostate cancer," The University of Michigan Department of Biostatistics Working Paper Series 1024, Berkeley Electronic Press.
  • Handle: RePEc:bep:mchbio:1024
    Note: oai:bepress.com:umichbiostat-1024
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1024&context=umichbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Skates S. J & Pauler D. K & Jacobs I. J, 2001. "Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 429-439, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher H. Morrell & Larry J. Brant & Shan Sheng & E. Jeffrey Metter, 2012. "Screening for prostate cancer using multivariate mixed-effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1151-1175, November.
    2. Ruben Amoros & Ruth King & Hidenori Toyoda & Takashi Kumada & Philip J. Johnson & Thomas G. Bird, 2019. "A continuous-time hidden Markov model for cancer surveillance using serum biomarkers with application to hepatocellular carcinoma," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 67-86, August.
    3. Natasha Stout & Amy Knudsen & Chung Kong & Pamela McMahon & G. Gazelle, 2009. "Calibration Methods Used in Cancer Simulation Models and Suggested Reporting Guidelines," PharmacoEconomics, Springer, vol. 27(7), pages 533-545, July.
    4. Yingye Zheng & Patrick Heagerty, 2004. "Partly Conditional Survival Models for Longitudinal Data," UW Biostatistics Working Paper Series 1053, Berkeley Electronic Press.
    5. G. Muniz Terrera & A. van den Hout & F. E. Matthews, 2011. "Random change point models: investigating cognitive decline in the presence of missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(4), pages 705-716, November.
    6. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:mchbio:1024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.