IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/26-15.html
   My bibliography  Save this paper

Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models

Author

Listed:
  • Le-Yu Chen
  • Sokbae (Simon) Lee

Abstract

This paper studies inference of preference parameters in semiparametric discrete choice models when these parameters are not point-identified and the identified set is characterized by a class of conditional moment inequalities. Exploring the semiparametric modeling restrictions, we show that the identified set can be equivalently formulated by moment inequalities conditional on only two continuous indexing variables. Such formulation holds regardless of the covariate dimension, thereby breaking the curse of dimensionality for nonparametric inference based on the underlying conditional moment inequalities. We also extend this dimension reducing characterization result to a variety of semi-parametric models under which the sign of conditional expectation of a certain transformation of the outcome is the same as that of the indexing variable.

Suggested Citation

  • Le-Yu Chen & Sokbae (Simon) Lee, 2015. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," CeMMAP working papers 26/15, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:26/15
    DOI: 10.1920/wp.cem.2015.2615
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP2615.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2015.2615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Armstrong, Timothy B. & Chan, Hock Peng, 2016. "Multiscale adaptive inference on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 194(1), pages 24-43.
    2. Ariel Pakes & Jack Porter, 2024. "Moment inequalities for multinomial choice with fixed effects," Quantitative Economics, Econometric Society, vol. 15(1), pages 1-25, January.
    3. Armstrong, Timothy B., 2015. "Asymptotically exact inference in conditional moment inequality models," Journal of Econometrics, Elsevier, vol. 186(1), pages 51-65.
    4. Menzel, Konrad, 2014. "Consistent estimation with many moment inequalities," Journal of Econometrics, Elsevier, vol. 182(2), pages 329-350.
    5. Armstrong, Timothy B., 2018. "On the choice of test statistic for conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 203(2), pages 241-255.
    6. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    7. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    8. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    9. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    10. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    11. Lee, Myoung-jae, 1992. "Median regression for ordered discrete response," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 59-77.
    12. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    13. Jacob Goeree & Charles Holt & Thomas Palfrey, 2005. "Regular Quantal Response Equilibrium," Experimental Economics, Springer;Economic Science Association, vol. 8(4), pages 347-367, December.
    14. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    15. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    16. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    17. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2013. "Testing functional inequalities," Journal of Econometrics, Elsevier, vol. 172(1), pages 14-32.
    18. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    19. Abrevaya, Jason, 2000. "Rank estimation of a generalized fixed-effects regression model," Journal of Econometrics, Elsevier, vol. 95(1), pages 1-23, March.
    20. Jeremy T. Fox, 2007. "Semiparametric estimation of multinomial discrete-choice models using a subset of choices," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1002-1019, December.
    21. Armstrong, Timothy B., 2014. "Weighted KS statistics for inference on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 181(2), pages 92-116.
    22. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    23. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    24. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    25. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    26. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    27. Chen, Songnian, 2010. "An integrated maximum score estimator for a generalized censored quantile regression model," Journal of Econometrics, Elsevier, vol. 155(1), pages 90-98, March.
    28. Abrevaya, Jason, 1999. "Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 93(2), pages 203-228, December.
    29. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    30. Hansen, Bruce E., 2005. "Exact Mean Integrated Squared Error Of Higher Order Kernel Estimators," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1031-1057, December.
    31. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    32. Chetverikov, Denis, 2018. "Adaptive Tests Of Conditional Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 34(1), pages 186-227, February.
    33. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    34. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    35. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    36. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    2. Adam M. Rosen & Takuya Ura, 2019. "Finite Sample Inference for the Maximum Score Estimand," Papers 1903.01511, arXiv.org, revised May 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aradillas-López, Andrés & Rosen, Adam M., 2022. "Inference in ordered response games with complete information," Journal of Econometrics, Elsevier, vol. 226(2), pages 451-476.
    2. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    3. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    5. Andrews, Donald W.K. & Shi, Xiaoxia, 2017. "Inference based on many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 196(2), pages 275-287.
    6. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    9. Hsu, Yu-Chin & Shen, Shu, 2019. "Testing treatment effect heterogeneity in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 208(2), pages 468-486.
    10. Aradillas-López, Andrés & Gandhi, Amit & Quint, Daniel, 2016. "A simple test for moment inequality models with an application to English auctions," Journal of Econometrics, Elsevier, vol. 194(1), pages 96-115.
    11. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    12. Wan, Yuanyuan & Xu, Haiqing, 2015. "Inference in semiparametric binary response models with interval data," Journal of Econometrics, Elsevier, vol. 184(2), pages 347-360.
    13. Jiarui Liu, 2021. "Sequential Search Models: A Pairwise Maximum Rank Approach," Papers 2104.13865, arXiv.org, revised Nov 2021.
    14. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    15. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    16. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    17. Nicky L. Grant & Richard J. Smith, 2018. "GEL-based inference with unconditional moment inequality restrictions," CeMMAP working papers CWP23/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    19. Armstrong, Timothy B., 2018. "On the choice of test statistic for conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 203(2), pages 241-255.
    20. Armstrong, Timothy B. & Chan, Hock Peng, 2016. "Multiscale adaptive inference on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 194(1), pages 24-43.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:26/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.