IDEAS home Printed from https://ideas.repec.org/p/ash/wpaper/112.html
   My bibliography  Save this paper

Strategic hiding and exploration in networks

Author

Listed:
  • Francis Bloch

    (Universite´ Paris 1 and Paris School of Economics)

  • Bhaskar Dutta

    (Ashoka University)

  • Marcin Dziubi´nski

    (Institute of Informatics, University of Warsaw)

Abstract

We propose and study a model of strategic network design and exploration where the hider, subject to a budget constraint restricting the number of links, chooses a connected network and the location of an object. Meanwhile, the seeker, not observing the network and the location of the object, chooses a network exploration strategy starting at a fixed node in the network. The network exploration follows the expanding search paradigm of Alpern and Lidbetter (2013). We obtain a Nash equilibrium and characterize equilibrium payoffs in the case of linking budget allowing for trees only. We also give an upper bound on the expected number of steps needed to find the hider for the case where the linking budget allows for at most one cycle in the network.

Suggested Citation

  • Francis Bloch & Bhaskar Dutta & Marcin Dziubi´nski, 2024. "Strategic hiding and exploration in networks," Working Papers 112, Ashoka University, Department of Economics.
  • Handle: RePEc:ash:wpaper:112
    as

    Download full text from publisher

    File URL: https://dp.ashoka.edu.in/ash/wpaper/paper112_0.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Igor Averbakh & Jordi Pereira, 2012. "The flowtime network construction problem," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 681-694.
    2. Bloch, Francis & Dutta, Bhaskar & Dziubiński, Marcin, 2020. "A game of hide and seek in networks," Journal of Economic Theory, Elsevier, vol. 190(C).
    3. Steve Alpern & Thomas Lidbetter, 2019. "Approximate solutions for expanding search games on general networks," Annals of Operations Research, Springer, vol. 275(2), pages 259-279, April.
    4. Steve Alpern & Thomas Lidbetter, 2013. "Mining Coal or Finding Terrorists: The Expanding Search Paradigm," Operations Research, INFORMS, vol. 61(2), pages 265-279, April.
    5. Shmuel Gal, 2001. "On the optimality of a simple strategy for searching graphs," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(4), pages 533-542.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    2. Lidbetter, Thomas, 2020. "Search and rescue in the face of uncertain threats," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1153-1160.
    3. Garrec, Tristan & Scarsini, Marco, 2020. "Search for an immobile hider on a stochastic network," European Journal of Operational Research, Elsevier, vol. 283(2), pages 783-794.
    4. Angelopoulos, Spyros & Lidbetter, Thomas, 2020. "Competitive search in a network," European Journal of Operational Research, Elsevier, vol. 286(2), pages 781-790.
    5. Felix Happach & Lisa Hellerstein & Thomas Lidbetter, 2022. "A General Framework for Approximating Min Sum Ordering Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1437-1452, May.
    6. Tianyu Wang & Igor Averbakh, 2022. "Network construction/restoration problems: cycles and complexity," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 51-73, August.
    7. Lidbetter, Thomas, 2017. "On the approximation ratio of the Random Chinese Postman Tour for network search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 782-788.
    8. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    9. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    10. Robbert Fokkink & Ken Kikuta & David Ramsey, 2017. "The search value of a set," Annals of Operations Research, Springer, vol. 256(1), pages 63-73, September.
    11. Vassili Kolokoltsov, 2017. "The Evolutionary Game of Pressure (or Interference), Resistance and Collaboration," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 915-944, November.
    12. Lidbetter, Thomas, 2013. "Search games with multiple hidden objects," LSE Research Online Documents on Economics 55103, London School of Economics and Political Science, LSE Library.
    13. Hellerstein, Lisa & Lidbetter, Thomas, 2023. "A game theoretic approach to a problem in polymatroid maximization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 979-988.
    14. Steve Alpern & Thomas Lidbetter, 2014. "Searching a Variable Speed Network," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 697-711, August.
    15. Liu, Dehai & Xiao, Xingzhi & Li, Hongyi & Wang, Weiguo, 2015. "Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework," European Journal of Operational Research, Elsevier, vol. 243(3), pages 974-984.
    16. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    17. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    18. Averbakh, Igor & Pereira, Jordi, 2015. "Network construction problems with due dates," European Journal of Operational Research, Elsevier, vol. 244(3), pages 715-729.
    19. Vic Baston & Kensaku Kikuta, 2015. "Search games on a network with travelling and search costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 347-365, May.
    20. Bloch, Francis & Chatterjee, Kalyan & Dutta, Bhaskar, 2023. "Attack and interception in networks," Theoretical Economics, Econometric Society, vol. 18(4), November.

    More about this item

    Keywords

    Network exploration;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ash:wpaper:112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ashoka University (email available below). General contact details of provider: https://www.ashoka.edu.in .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.