IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.01159.html
   My bibliography  Save this paper

Partially Identified Heterogeneous Treatment Effect with Selection: An Application to Gender Gaps

Author

Listed:
  • Xiaolin Sun
  • Xueyan Zhao
  • D. S. Poskitt

Abstract

This paper addresses the sample selection model within the context of the gender gap problem, where even random treatment assignment is affected by selection bias. By offering a robust alternative free from distributional or specification assumptions, we bound the treatment effect under the sample selection model with an exclusion restriction, an assumption whose validity is tested in the literature. This exclusion restriction allows for further segmentation of the population into distinct types based on observed and unobserved characteristics. For each type, we derive the proportions and bound the gender gap accordingly. Notably, trends in type proportions and gender gap bounds reveal an increasing proportion of always-working individuals over time, alongside variations in bounds, including a general decline across time and consistently higher bounds for those in high-potential wage groups. Further analysis, considering additional assumptions, highlights persistent gender gaps for some types, while other types exhibit differing or inconclusive trends. This underscores the necessity of separating individuals by type to understand the heterogeneous nature of the gender gap.

Suggested Citation

  • Xiaolin Sun & Xueyan Zhao & D. S. Poskitt, 2024. "Partially Identified Heterogeneous Treatment Effect with Selection: An Application to Gender Gaps," Papers 2410.01159, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2410.01159
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.01159
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Esfandiar Maasoumi & Le Wang, 2019. "The Gender Gap between Earnings Distributions," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2438-2504.
    3. Xuan Chen & Carlos A. Flores, 2015. "Bounds on Treatment Effects in the Presence of Sample Selection and Noncompliance: The Wage Effects of Job Corps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 523-540, October.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Giovanni Mellace & Roberto Rocci, 2011. "Principal Stratification in sample selection problems with non normal error terms," CEIS Research Paper 194, Tor Vergata University, CEIS, revised 02 May 2011.
    6. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    7. Martin Huber, 2012. "Identification of Average Treatment Effects in Social Experiments Under Alternative Forms of Attrition," Journal of Educational and Behavioral Statistics, , vol. 37(3), pages 443-474, June.
    8. Francine D. Blau & Andrea H. Beller, 1988. "Trends in Earnings Differentials by Gender, 1971–1981," ILR Review, Cornell University, ILR School, vol. 41(4), pages 513-529, July.
    9. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    10. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    11. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    12. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    13. Francine D. Blau & Lawrence M. Kahn, 2017. "The Gender Wage Gap: Extent, Trends, and Explanations," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 789-865, September.
    14. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    15. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    16. Andrew Chesher, 2010. "Instrumental Variable Models for Discrete Outcomes," Econometrica, Econometric Society, vol. 78(2), pages 575-601, March.
    17. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    18. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    19. Derek Neal, 2004. "The Measured Black-White Wage Gap among Women Is Too Small," Journal of Political Economy, University of Chicago Press, vol. 112(S1), pages 1-28, February.
    20. Claudia Goldin, 2014. "A Grand Gender Convergence: Its Last Chapter," American Economic Review, American Economic Association, vol. 104(4), pages 1091-1119, April.
    21. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    22. Iván Fernández‐Val & Aico van Vuuren & Francis Vella & Franco Peracchi, 2023. "Selection and the distribution of female real hourly wages in the United States," Quantitative Economics, Econometric Society, vol. 14(2), pages 571-607, May.
    23. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    24. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    25. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    26. Francine D. Blau, 1998. "Trends in the Well-Being of American Women, 1970-1995," Journal of Economic Literature, American Economic Association, vol. 36(1), pages 112-165, March.
    27. Martin Huber & Lukas Laffers & Giovanni Mellace, 2017. "Sharp IV Bounds on Average Treatment Effects on the Treated and Other Populations Under Endogeneity and Noncompliance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 56-79, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    2. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    3. Francine D. Blau & Lawrence M. Kahn & Nikolai Boboshko & Matthew Comey, 2024. "The Impact of Selection into the Labor Force on the Gender Wage Gap," Journal of Labor Economics, University of Chicago Press, vol. 42(4), pages 1093-1133.
    4. Maasoumi, Esfandiar & Wang, Le, 2017. "What can we learn about the racial gap in the presence of sample selection?," Journal of Econometrics, Elsevier, vol. 199(2), pages 117-130.
    5. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    6. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    7. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    8. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    9. Michela Bia & German Blanco & Marie Valentova, 2021. "The Causal Impact of Taking Parental Leave on Wages: Evidence from 2005 to 2015," LISER Working Paper Series 2021-08, Luxembourg Institute of Socio-Economic Research (LISER).
    10. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    11. Aizawa, T.;, 2019. "Reviewing the Existing Evidence of the Conditional Cash Transfer in India through the Partial Identification Approach," Health, Econometrics and Data Group (HEDG) Working Papers 19/24, HEDG, c/o Department of Economics, University of York.
    12. Ahrsjö, Ulrika & Niknami, Susan & Palme, Mårten, 2021. "Wage Inequality, Selection and the Evolution of the Gender Earnings Gap in Sweden," Research Papers in Economics 2021:3, Stockholm University, Department of Economics.
    13. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    14. François Gerard & Miikka Rokkanen & Christoph Rothe, 2020. "Bounds on treatment effects in regression discontinuity designs with a manipulated running variable," Quantitative Economics, Econometric Society, vol. 11(3), pages 839-870, July.
    15. Francine D. Blau & Lawrence M. Kahn, 2017. "The Gender Wage Gap: Extent, Trends, and Explanations," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 789-865, September.
    16. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    17. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    18. Marina Bonaccolto-Töpfer & Carolina Castagnetti & Luisa Rosti, 2023. "Changes in the gender pay gap over time: the case of West Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 57(1), pages 1-17, December.
    19. Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020. "Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
    20. Ulf Nielsson & Herdis Steingrimsdottir, 2018. "The signalling value of education across genders," Empirical Economics, Springer, vol. 54(4), pages 1827-1854, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.01159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.