IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.15256.html
   My bibliography  Save this paper

Weak-instrument-robust subvector inference in instrumental variables regression: A subvector Lagrange multiplier test and properties of subvector Anderson-Rubin confidence sets

Author

Listed:
  • Malte Londschien
  • Peter Buhlmann

Abstract

We propose a weak-instrument-robust subvector Lagrange multiplier test for instrumental variables regression. We show that it is asymptotically size-correct under a technical condition. This is the first weak-instrument-robust subvector test for instrumental variables regression to recover the degrees of freedom of the commonly used non-weak-instrument-robust Wald test. Additionally, we provide a closed-form solution for subvector confidence sets obtained by inverting the subvector Anderson-Rubin test. We show that they are centered around a k-class estimator. Also, we show that the subvector confidence sets for single coefficients of the causal parameter are jointly bounded if and only if Anderson's likelihood-ratio test rejects the hypothesis that the first-stage regression parameter is of reduced rank, that is, that the causal parameter is not identified. Finally, we show that if a confidence set obtained by inverting the Anderson-Rubin test is bounded and nonempty, it is equal to a Wald-based confidence set with a data-dependent confidence level. We explicitly compute this Wald-based confidence test.

Suggested Citation

  • Malte Londschien & Peter Buhlmann, 2024. "Weak-instrument-robust subvector inference in instrumental variables regression: A subvector Lagrange multiplier test and properties of subvector Anderson-Rubin confidence sets," Papers 2407.15256, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2407.15256
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.15256
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    2. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    3. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis & Linchun Chen, 2012. "On the Asymptotic Sizes of Subset Anderson–Rubin and Lagrange Multiplier Tests in Linear Instrumental Variables Regression," Econometrica, Econometric Society, vol. 80(6), pages 2649-2666, November.
    4. Kleibergen, Frank, 2021. "Efficient size correct subset inference in homoskedastic linear instrumental variables regression," Journal of Econometrics, Elsevier, vol. 221(1), pages 78-96.
    5. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    6. Martin Emil Jakobsen & Jonas Peters, 2020. "Distributional robustness of K-class estimators and the PULSE," Papers 2005.03353, arXiv.org, revised Mar 2022.
    7. Hillier, Grant, 2009. "On The Conditional Likelihood Ratio Test For Several Parameters In Iv Regression," Econometric Theory, Cambridge University Press, vol. 25(2), pages 305-335, April.
    8. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    9. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2019. "A more powerful subvector Anderson Rubin test in linear instrumental variables regression," Quantitative Economics, Econometric Society, vol. 10(2), pages 487-526, May.
    10. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    11. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    12. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    13. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    14. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    15. Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.
    16. Morimune, Kimio, 1993. "A Derivation of the Limited Information Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 9(02), pages 315-316, April.
    17. Tomomi Tanaka & Colin F. Camerer & Quang Nguyen, 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam," American Economic Review, American Economic Association, vol. 100(1), pages 557-571, March.
    18. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," NBER Working Papers 4483, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
    2. Frank Kleibergen & Zhaoguo Zhan, 2021. "Double robust inference for continuous updating GMM," Papers 2105.08345, arXiv.org.
    3. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    4. Kleibergen, Frank, 2021. "Efficient size correct subset inference in homoskedastic linear instrumental variables regression," Journal of Econometrics, Elsevier, vol. 221(1), pages 78-96.
    5. Bun, Maurice J.G. & Kleibergen, Frank, 2022. "Identification Robust Inference For Moments-Based Analysis Of Linear Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 38(4), pages 689-751, August.
    6. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    7. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    8. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    9. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    10. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    11. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    12. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    13. Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.
    14. Marcellino, Massimiliano & Kapetanios, George & Khalaf, Lynda, 2015. "Factor based identification-robust inference in IV regressions," CEPR Discussion Papers 10390, C.E.P.R. Discussion Papers.
    15. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    16. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    17. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2021. "A Powerful Subvector Anderson Rubin Test in Linear Instrumental Variables Regression with Conditional Heteroskedasticity," Papers 2103.11371, arXiv.org, revised Oct 2022.
    18. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    19. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    20. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.15256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.