IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.02570.html
   My bibliography  Save this paper

Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options

Author

Listed:
  • Jiefei Yang
  • Guanglian Li

Abstract

We propose an efficient and easy-to-implement gradient-enhanced least squares Monte Carlo method for computing price and Greeks (i.e., derivatives of the price function) of high-dimensional American options. It employs the sparse Hermite polynomial expansion as a surrogate model for the continuation value function, and essentially exploits the fast evaluation of gradients. The expansion coefficients are computed by solving a linear least squares problem that is enhanced by gradient information of simulated paths. We analyze the convergence of the proposed method, and establish an error estimate in terms of the best approximation error in the weighted $H^1$ space, the statistical error of solving discrete least squares problems, and the time step size. We present comprehensive numerical experiments to illustrate the performance of the proposed method. The results show that it outperforms the state-of-the-art least squares Monte Carlo method with more accurate price, Greeks, and optimal exercise strategies in high dimensions but with nearly identical computational cost, and it can deliver comparable results with recent neural network-based methods up to dimension 100.

Suggested Citation

  • Jiefei Yang & Guanglian Li, 2024. "Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options," Papers 2405.02570, arXiv.org.
  • Handle: RePEc:arx:papers:2405.02570
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.02570
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.02570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.