IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.14322.html
   My bibliography  Save this paper

Estimation of Spectral Risk Measure for Left Truncated and Right Censored Data

Author

Listed:
  • Suparna Biswas
  • Rituparna Sen

Abstract

Left truncated and right censored data are encountered frequently in insurance loss data due to deductibles and policy limits. Risk estimation is an important task in insurance as it is a necessary step for determining premiums under various policy terms. Spectral risk measures are inherently coherent and have the benefit of connecting the risk measure to the user's risk aversion. In this paper we study the estimation of spectral risk measure based on left truncated and right censored data. We propose a non parametric estimator of spectral risk measure using the product limit estimator and establish the asymptotic normality for our proposed estimator. We also develop an Edgeworth expansion of our proposed estimator. The bootstrap is employed to approximate the distribution of our proposed estimator and shown to be second order accurate. Monte Carlo studies are conducted to compare the proposed spectral risk measure estimator with the existing parametric and nonparametric estimators for left truncated and right censored data. Our observation reveal that the proposed estimator outperforms all the estimators for small values of $k$ (coefficient of absolute risk aversion) and for small sample sizes for i.i.d. case. In the dependent case, it demonstrates superior performance for small $k$ across all sample sizes. Finally, we estimate the exponential spectral risk measure for two data sets viz; the Norwegian fire claims and the French marine losses.

Suggested Citation

  • Suparna Biswas & Rituparna Sen, 2024. "Estimation of Spectral Risk Measure for Left Truncated and Right Censored Data," Papers 2402.14322, arXiv.org, revised Feb 2025.
  • Handle: RePEc:arx:papers:2402.14322
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.14322
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin Dowd & David Blake, 2006. "After VaR: The Theory, Estimation, and Insurance Applications of Quantile‐Based Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 193-229, June.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Gu, Minggao, 1995. "Convergence of increments for cumulative hazard function in a mixed censorship-truncation model with application to hazard estimators," Statistics & Probability Letters, Elsevier, vol. 23(2), pages 135-139, May.
    4. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    5. Zhou, Yong, 1996. "A note on the TJW product-limit estimator for truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 26(4), pages 381-387, March.
    6. Zhou, Yong & Yip, Paul S. F., 1999. "A Strong Representation of the Product-Limit Estimator for Left Truncated and Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 261-280, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matyska, Branka, 2021. "Salience, systemic risk and spectral risk measures as capital requirements," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    2. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    3. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    4. Takashi Kato, 2017. "Asymptotic Analysis for Spectral Risk Measures Parameterized by Confidence Level," Papers 1711.07335, arXiv.org.
    5. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    6. Mike K. P. So & Chi-Ming Wong, 2012. "Estimation of multiple period expected shortfall and median shortfall for risk management," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 739-754, March.
    7. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    8. Massimiliano Barbi & Silvia Romagnoli, 2016. "Optimal hedge ratio under a subjective re-weighting of the original measure," Applied Economics, Taylor & Francis Journals, vol. 48(14), pages 1271-1280, March.
    9. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    10. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    11. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    12. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    13. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    14. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    15. Suparna Biswas & Rituparna Sen, 2019. "Kernel Based Estimation of Spectral Risk Measures," Papers 1903.03304, arXiv.org, revised Dec 2023.
    16. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    17. Laszlo A. Koczy, 2019. "The risk-based core for cooperative games with uncertainty," CERS-IE WORKING PAPERS 1906, Institute of Economics, Centre for Economic and Regional Studies.
    18. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    19. Liu, Yangyang & Zhou, Jiangxin & Zhou, Qihui & Liu, Chuanquan & Yu, Feng, 2023. "Bidding strategy of integrated energy system considering decision maker’s subjective risk aversion," Applied Energy, Elsevier, vol. 341(C).
    20. Cotter, John & Dowd, Kevin, 2006. "Spectral Risk Measures with an Application to Futures Clearinghouse Variation Margin Requirements," MPRA Paper 3495, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.14322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.