IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.08731.html
   My bibliography  Save this paper

Optimal management of DB pension fund under both underfunded and overfunded cases

Author

Listed:
  • Guohui Guan
  • Zongxia Liang
  • Yi Xia

Abstract

This paper investigates the optimal management of an aggregated defined benefit pension plan in a stochastic environment. The interest rate follows the Ornstein-Uhlenbeck model, the benefits follow the geometric Brownian motion while the contribution rate is determined by the spread method of fund amortization. The pension manager invests in the financial market with three assets: cash, bond and stock. Regardless of the initial status of the plan, we suppose that the pension fund may become underfunded or overfunded in the planning horizon. The optimization goal of the manager is to maximize the expected utility in the overfunded region minus the weighted solvency risk in the underfunded region. By introducing an auxiliary process and related equivalent optimization problems and using the martingale method, the optimal wealth process, optimal portfolio and efficient frontier are obtained under four cases (high tolerance towards solvency risk, low tolerance towards solvency risk, a specific lower bound, and high lower bound). Moreover, we also obtain the probabilities that the optimal terminal wealth falls in the overfunded and underfunded regions. At last, we present numerical analyses to illustrate the manager's economic behaviors.

Suggested Citation

  • Guohui Guan & Zongxia Liang & Yi Xia, 2023. "Optimal management of DB pension fund under both underfunded and overfunded cases," Papers 2302.08731, arXiv.org.
  • Handle: RePEc:arx:papers:2302.08731
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.08731
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eaton, Tim V. & Nofsinger, John R., 2004. "The effect of financial constraints and political pressure on the management of public pension plans," Journal of Accounting and Public Policy, Elsevier, vol. 23(3), pages 161-189.
    2. Kandice Kapinos, 2009. "On the Determinants of Defined Benefit Pension Plan Conversions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 30(2), pages 149-167, June.
    3. Hainaut, Donatien & Deelstra, Griselda, 2011. "Optimal funding of defined benefit pension plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 10(1), pages 31-52, January.
    4. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    5. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    6. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 1039-1061.
    7. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    8. Stone, M, 1987. "A Financing Explanation For Overfunded Pension Plan Terminations," Journal of Accounting Research, Wiley Blackwell, vol. 25(2), pages 317-326.
    9. Cathy Beaudoin & Nandini Chandar & Edward M. Werner, 2010. "Are potential effects of SFAS 158 associated with firms' decisions to freeze their defined benefit pension plans?," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 9(4), pages 424-451, November.
    10. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    11. Sharad Asthana, 1999. "Determinants of Funding Strategies and Actuarial Choices for Defined†Benefit Pension Plans," Contemporary Accounting Research, John Wiley & Sons, vol. 16(1), pages 39-74, March.
    12. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    13. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    14. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    15. Samuel H. Cox & Yijia Lin & Ruilin Tian & Jifeng Yu, 2013. "Managing Capital Market and Longevity Risks in a Defined Benefit Pension Plan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 585-620, September.
    16. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2006. "Optimal investment decisions with a liability: The case of defined benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 81-98, August.
    17. Thomas, Jacob K., 1989. "Why do firms terminate their overfunded pension plans?," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 361-398, November.
    18. Francesco Franzoni & José M. Marín, 2006. "Pension Plan Funding and Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 61(2), pages 921-956, April.
    19. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    20. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    21. Siegmann, Arjen, 2007. "Optimal investment policies for defined benefit pension funds," Journal of Pension Economics and Finance, Cambridge University Press, vol. 6(1), pages 1-20, March.
    22. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    23. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    24. Kandice Kapinos, 2009. "On the Determinants of Defined Benefit Pension Plan Conversions," Journal of Labor Research, Springer, vol. 30(2), pages 149-167, June.
    25. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    26. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    27. Cathy Beaudoin & Nandini Chandar & Edward M. Werner, 2010. "Are potential effects of SFAS 158 associated with firms' decisions to freeze their defined benefit pension plans?," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 9(4), pages 424-451, November.
    28. Juan Cárdenas & Nicolas Roux & Christian Jaramillo & Luis Martinez, 2014. "Is it my money or not? An experiment on risk aversion and the house-money effect," Experimental Economics, Springer;Economic Science Association, vol. 17(1), pages 47-60, March.
    29. Busra Zeynep Temocin & Ralf Korn & A. Sevtap Selcuk-Kestel, 2018. "Constant proportion portfolio insurance in defined contribution pension plan management under discrete-time trading," Annals of Operations Research, Springer, vol. 260(1), pages 515-544, January.
    30. Sundaresan, Suresh & Zapatero, Fernando, 1997. "Valuation, Optimal Asset Allocation and Retirement Incentives of Pension Plans," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 631-660.
    31. Busra Zeynep Temocin & Ralf Korn & A. Sevtap Selcuk-Kestel, 2018. "Constant proportion portfolio insurance in defined contribution pension plan management," Annals of Operations Research, Springer, vol. 266(1), pages 329-348, July.
    32. Emms, Paul, 2012. "Lifetime investment and consumption using a defined-contribution pension scheme," Journal of Economic Dynamics and Control, Elsevier, vol. 36(9), pages 1303-1321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    2. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    3. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    4. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    5. Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
    6. Kun Yu, 2016. "Excess of the PBO over the ABO and hard pension freezes," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 819-846, May.
    7. Chen, Zheng & Li, Zhongfei & Zeng, Yan, 2023. "Portfolio choice with illiquid asset for a loss-averse pension fund investor," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 60-83.
    8. Guohui Guan & Zongxia Liang & Yi xia, 2021. "Optimal management of DC pension fund under relative performance ratio and VaR constraint," Papers 2103.04352, arXiv.org.
    9. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    10. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    11. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    12. Zongxia Liang & Yang Liu & Litian Zhang, 2021. "A Framework of State-dependent Utility Optimization with General Benchmarks," Papers 2101.06675, arXiv.org, revised Dec 2023.
    13. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    14. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    15. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    16. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    17. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    18. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    19. Sheng, Jiliang & Xu, Si & An, Yunbi & Yang, Jun, 2021. "Dynamic portfolio strategy by loss-averse fund managers facing performance-induced fund flows," International Review of Financial Analysis, Elsevier, vol. 73(C).
    20. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.08731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.