High-Dimensional Conditionally Gaussian State Space Models with Missing Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
References listed on IDEAS
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016.
"Large Bayesian VARMAs,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
- Joshua C C Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Papers 1409, University of Strathclyde Business School, Department of Economics.
- Joshua Chan & Eric Eisenstat & Gary Koop, 2015. "Large Bayesian VARMAs," Working Paper series 15-36, Rimini Centre for Economic Analysis.
- Joshua C.C. Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Paper series 40_14, Rimini Centre for Economic Analysis.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2014. "Large Bayesian VARMAs," SIRE Discussion Papers 2015-06, Scottish Institute for Research in Economics (SIRE).
- James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020.
"Reconciled Estimates of Monthly GDP in the US,"
Economic Statistics Centre of Excellence (ESCoE) Discussion Papers
ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Reconciled Estimates of Monthly GDP in the US," Working Papers 22-01, Federal Reserve Bank of Cleveland.
- Angelia L. Grant & Joshua C.C. Chan, 2017.
"A Bayesian Model Comparison for Trend‐Cycle Decompositions of Output,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(2-3), pages 525-552, March.
- Joshua C.C. Chan & Angelia L. Grant, 2015. "A Bayesian model comparison for trend-cycle decompositions of output," CAMA Working Papers 2015-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chan, Joshua C.C., 2023.
"Comparing stochastic volatility specifications for large Bayesian VARs,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
- Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Kastner, Gregor, 2019.
"Sparse Bayesian time-varying covariance estimation in many dimensions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
- Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468, arXiv.org, revised Nov 2017.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
- Grant, Angelia L. & Chan, Joshua C.C., 2017.
"Reconciling output gaps: Unobserved components model and Hodrick–Prescott filter,"
Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 114-121.
- Joshua C.C. Chan & Angelia L. Grant, 2016. "Reconciling output gaps: unobserved components model and Hodrick-Prescott filter," CAMA Working Papers 2016-44, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jarociński, Marek, 2015.
"A note on implementing the Durbin and Koopman simulation smoother,"
Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 1-3.
- Jarocinski, Marek, 2014. "A note on implementing the Durbin and Koopman simulation smoother," MPRA Paper 59466, University Library of Munich, Germany.
- Jarociński, Marek, 2015. "A note on implementing the Durbin and Koopman simulation smoother," Working Paper Series 1867, European Central Bank.
- James H. Stock & Mark W. Watson, 2016.
"Core Inflation and Trend Inflation,"
The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
- James H. Stock & Mark W. Watson, 2015. "Core Inflation and Trend Inflation," NBER Working Papers 21282, National Bureau of Economic Research, Inc.
- McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
- Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020.
"Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
- Bo Zhang & Joshua C.C. Chan & Jamie L. Cross, 2018. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," CAMA Working Papers 2018-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jushan Bai & Serena Ng, 2021.
"Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
- Jushan Bai & Serena Ng, 2019. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Papers 1910.06677, arXiv.org, revised Aug 2021.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024.
"Addressing COVID-19 Outliers in BVARs with Stochastic Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," Working Papers 21-02R, Federal Reserve Bank of Cleveland, revised 09 Aug 2021.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano & Mertens, Elmar, 2022. "Addressing COVID-19 outliers in BVARs with stochastic volatility," Discussion Papers 13/2022, Deutsche Bundesbank.
- Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea & Mertens, Elmar, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," CEPR Discussion Papers 15964, C.E.P.R. Discussion Papers.
- Timothy Cogley & Thomas J. Sargent, 2005.
"Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
- Timothy Cogley & Thomas Sargent, "undated". "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
- Timothy Cogley & Thomas J. Sargent, 2003. "Drifts and volatilities: monetary policies and outcomes in the post WWII U.S," FRB Atlanta Working Paper 2003-25, Federal Reserve Bank of Atlanta.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013.
"Macroeconomic forecasting and structural change,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2009. "Macroeconomic Forecasting and Structural Change," Working Papers ECARES 2009_020, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & D'Agostino, Antonello & Gambetti, Luca, 2010. "Macroeconomic forecasting and structural change," Working Paper Series 1167, European Central Bank.
- D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
- Giannone, Domenico & D’Agostino, Antonello & Gambetti, Luca, 2009. "Macroeconomic Forecasting and Structural Change," CEPR Discussion Papers 7542, C.E.P.R. Discussion Papers.
- Gary M. Koop, 2013.
"Forecasting with Medium and Large Bayesian VARS,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
- Gary Koop, 2010. "Forecasting with Medium and Large Bayesian VARs," Working Paper series 43_10, Rimini Centre for Economic Analysis.
- Gary Koop, 2011. "Forecasting with Medium and Large Bayesian VARs," Working Papers 1117, University of Strathclyde Business School, Department of Economics.
- Koop, Gary, 2011. "Forecasting with Medium and Large Bayesian VARs," SIRE Discussion Papers 2011-38, Scottish Institute for Research in Economics (SIRE).
- Stefanos Dimitrakopoulos & Michalis Kolossiatis, 2020. "Bayesian analysis of moving average stochastic volatility models: modeling in-mean effects and leverage for financial time series," Econometric Reviews, Taylor & Francis Journals, vol. 39(4), pages 319-343, April.
- Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2013.
"A New Model of Trend Inflation,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 94-106, January.
- Joshua Chan & Gary Koop & Simon Potter, 2012. "A New Model of Trend Inflation," Working Papers 1202, University of Strathclyde Business School, Department of Economics.
- Joshua C C Chan & Gary Koop & Simon M Potter, 2012. "A New Model of Trend Inflation," CAMA Working Papers 2012-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chan, Joshua & Koop, Gary & Potter, Simon, 2012. "A New Model Of Trend Inflation," SIRE Discussion Papers 2012-12, Scottish Institute for Research in Economics (SIRE).
- Chan, Joshua & Koop, Gary & Potter, Simon, 2012. "A new model of trend inflation," MPRA Paper 39496, University Library of Munich, Germany.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Joshua C. C. Chan, 2017.
"The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
- Joshua C.C. Chan, 2015. "The Stochastic Volatility in Mean Model with Time-Varying Parameters: An Application to Inflation Modeling," CAMA Working Papers 2015-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009.
"Real-Time Measurement of Business Conditions,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
- Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-Time Measurement of Business Conditions," NBER Working Papers 14349, National Bureau of Economic Research, Inc.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-time measurement of business conditions," Working Papers 08-19, Federal Reserve Bank of Philadelphia.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Litterman, Robert B, 1986.
"Forecasting with Bayesian Vector Autoregressions-Five Years of Experience,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
- Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
- Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
- Todd E. Clark, 2011.
"Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
- Clark, Todd E., 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 327-341.
- Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Chan, Joshua C.C., 2013.
"Moving average stochastic volatility models with application to inflation forecast,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
- Joshua C C Chan, 2012. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," ANU Working Papers in Economics and Econometrics 2012-591, Australian National University, College of Business and Economics, School of Economics.
- Joshua C.C. Chan, 2013. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," CAMA Working Papers 2013-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
- Frank Schorfheide & Dongho Song, 2015.
"Real-Time Forecasting With a Mixed-Frequency VAR,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
- Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
- Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
- Joshua C. C. Chan, 2020.
"Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
- Joshua C.C. Chan, 2015. "Large Bayesian VARs: A flexible Kronecker error covariance structure," CAMA Working Papers 2015-41, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Lenza, Michele & Primiceri, Giorgio E., 2020.
"How to estimate a VAR after March 2020,"
Working Paper Series
2461, European Central Bank.
- Michele Lenza & Giorgio E. Primiceri, 2020. "How to Estimate a VAR after March 2020," NBER Working Papers 27771, National Bureau of Economic Research, Inc.
- Primiceri, Giorgio & Lenza, Michele, 2020. "How to Estimate a VAR after March 2020," CEPR Discussion Papers 15245, C.E.P.R. Discussion Papers.
- Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
- Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Florian Eckert & Philipp Kronenberg & Heiner Mikosch & Stefan Neuwirth, 2020. "Tracking Economic Activity With Alternative High-Frequency Data," KOF Working papers 20-488, KOF Swiss Economic Institute, ETH Zurich.
- Pettenuzzo, Davide & Sabbatucci, Riccardo & Timmermann, Allan, 2023. "Dividend suspensions and cash flows during the Covid-19 pandemic: A dynamic econometric model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1522-1541.
- Hauber, Philipp & Schumacher, Christian, 2021. "Precision-based sampling with missing observations: A factor model application," Discussion Papers 11/2021, Deutsche Bundesbank.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2022.
"Measuring real activity using a weekly economic index,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 667-687, June.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2020. "Measuring Real Activity Using a Weekly Economic Index," Staff Reports 920, Federal Reserve Bank of New York.
- Daniel J. Lewis & Karel Mertens & James H. Stock, 2020. "Measuring Real Activity Using a Weekly Economic Index," Working Papers 2011, Federal Reserve Bank of Dallas, revised 02 Mar 2021.
- Petrella, Ivan & Antolin-Diaz, Juan & Drechsel, Thomas, 2021. "Advances in Nowcasting Economic Activity: Secular Trends, Large Shocks and New Data," CEPR Discussion Papers 15926, C.E.P.R. Discussion Papers.
- Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
- Gregor Kastner & Florian Huber, 2020.
"Sparse Bayesian vector autoregressions in huge dimensions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
- Gregor Kastner & Florian Huber, 2017. "Sparse Bayesian vector autoregressions in huge dimensions," Papers 1704.03239, arXiv.org, revised Dec 2019.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
- J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
- Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
- Chib, Siddhartha & Jeliazkov, Ivan, 2006. "Inference in Semiparametric Dynamic Models for Binary Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 685-700, June.
- Fu, Bowen, 2020. "Is the slope of the Phillips curve time-varying? Evidence from unobserved components models," Economic Modelling, Elsevier, vol. 88(C), pages 320-340.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eraslan, Sercan & Reif, Magnus, 2023. "A latent weekly GDP indicator for Germany," Technical Papers 08/2023, Deutsche Bundesbank.
- Mertens, Elmar, 2023.
"Precision-based sampling for state space models that have no measurement error,"
Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
- Mertens, Elmar, 2023. "Precision-based sampling for state space models that have no measurement error," Discussion Papers 25/2023, Deutsche Bundesbank.
- Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024.
"Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2023. "Advances in Nowcasting Economic Activity: The Role of Heterogeneous Dynamics and Fat Tails," CEPR Discussion Papers 17800, C.E.P.R. Discussion Papers.
- Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023.
"Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP,"
Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
- Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chan, Joshua C.C., 2023.
"Comparing stochastic volatility specifications for large Bayesian VARs,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
- Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Ankargren, Sebastian & Jonéus, Paulina, 2021.
"Simulation smoothing for nowcasting with large mixed-frequency VARs,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Papers 1907.01075, arXiv.org.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024.
"Addressing COVID-19 Outliers in BVARs with Stochastic Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," Working Papers 21-02R, Federal Reserve Bank of Cleveland, revised 09 Aug 2021.
- Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea & Mertens, Elmar, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," CEPR Discussion Papers 15964, C.E.P.R. Discussion Papers.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano & Mertens, Elmar, 2022. "Addressing COVID-19 outliers in BVARs with stochastic volatility," Discussion Papers 13/2022, Deutsche Bundesbank.
- Chan, Joshua C.C. & Yu, Xuewen, 2022.
"Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Joshua C.C. Chan & Xuewen Yu, 2020. "Fast and accurate variational inference for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2020-108, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
- Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020.
"Reconciled Estimates of Monthly GDP in the US,"
Economic Statistics Centre of Excellence (ESCoE) Discussion Papers
ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Reconciled Estimates of Monthly GDP in the US," Working Papers 22-01, Federal Reserve Bank of Cleveland.
- Mertens, Elmar, 2023.
"Precision-based sampling for state space models that have no measurement error,"
Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
- Mertens, Elmar, 2023. "Precision-based sampling for state space models that have no measurement error," Discussion Papers 25/2023, Deutsche Bundesbank.
- Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020.
"Composite likelihood methods for large Bayesian VARs with stochastic volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
- Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility," Working Paper Series 44, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
- Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2018-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
- Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
More about this item
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-03-06 (Econometrics)
- NEP-ETS-2023-03-06 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.03172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.