IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.00896.html
   My bibliography  Save this paper

Data-based Automatic Discretization of Nonparametric Distributions

Author

Listed:
  • Alexis Akira Toda

Abstract

Although using non-Gaussian distributions in economic models has become increasingly popular, currently there is no systematic way for calibrating a discrete distribution from the data without imposing parametric assumptions. This paper proposes a simple nonparametric calibration method based on the Golub-Welsch algorithm for Gaussian quadrature. Application to an optimal portfolio problem suggests that assuming Gaussian instead of nonparametric shocks leads to up to 17% overweighting in the stock portfolio because the investor underestimates the probability of crashes.

Suggested Citation

  • Alexis Akira Toda, 2018. "Data-based Automatic Discretization of Nonparametric Distributions," Papers 1805.00896, arXiv.org, revised May 2019.
  • Handle: RePEc:arx:papers:1805.00896
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.00896
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tauchen, George & Hussey, Robert, 1991. "Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models," Econometrica, Econometric Society, vol. 59(2), pages 371-396, March.
    2. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    3. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    4. Allen C. Miller, III & Thomas R. Rice, 1983. "Discrete Approximations of Probability Distributions," Management Science, INFORMS, vol. 29(3), pages 352-362, March.
    5. Leland E. Farmer & Alexis Akira Toda, 2017. "Discretizing nonlinear, non‐Gaussian Markov processes with exact conditional moments," Quantitative Economics, Econometric Society, vol. 8(2), pages 651-683, July.
    6. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    7. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    8. Tsionas, Efthymios G., 2003. "Exact solution of asset pricing models with arbitrary shock distributions," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 843-851, March.
    9. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    10. Tanaka, Ken’ichiro & Toda, Alexis Akira, 2013. "Discrete approximations of continuous distributions by maximum entropy," Economics Letters, Elsevier, vol. 118(3), pages 445-450.
    11. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(2), pages 645-700.
    12. Walter Pohl & Karl Schmedders & Ole Wilms, 2018. "Higher Order Effects in Asset Pricing Models with Long‐Run Risks," Journal of Finance, American Finance Association, vol. 73(3), pages 1061-1111, June.
    13. Rietz, Thomas A., 1988. "The equity risk premium a solution," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 117-131, July.
    14. Flodén, Martin, 2008. "A note on the accuracy of Markov-chain approximations to highly persistent AR(1) processes," Economics Letters, Elsevier, vol. 99(3), pages 516-520, June.
    15. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Angelopoulos & Spyridon Lazarakis & Rebecca Mancy & Dorice Agol & Elissaios Papyrakis, 2023. "Resource Risk and the Origins of Inequality: Evidence from a Pastoralist Economy," CESifo Working Paper Series 10611, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Grey, 2021. "Efficient VAR discretization," Economics Letters, Elsevier, vol. 204(C).
    2. Roulleau-Pasdeloup, Jordan, 2023. "Analyzing Linear DSGE models: the Method of Undetermined Markov States," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    3. Borovička, Jaroslav & Stachurski, John, 2021. "Stability of equilibrium asset pricing models: A necessary and sufficient condition," Journal of Economic Theory, Elsevier, vol. 193(C).
    4. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    5. Takefumi Yamazaki, 2018. "Accuracy and speed of the solution methods for sovereign default models: The stable performance of the Tauchen method and cubic spline interpolation," Public Policy Review, Policy Research Institute, Ministry of Finance Japan, vol. 14(4), pages 641-662, July.
    6. Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
    7. Fabrice Tourre, 2017. "A Macro-Finance Approach to Sovereign Debt Spreads and Returns," 2017 Meeting Papers 13, Society for Economic Dynamics.
    8. Pakoš, Michal, 2013. "Long-run risk and hidden growth persistence," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1911-1928.
    9. Leland E. Farmer, 2021. "The discretization filter: A simple way to estimate nonlinear state space models," Quantitative Economics, Econometric Society, vol. 12(1), pages 41-76, January.
    10. Matthijs Lof, 2014. "GMM Estimation with Non-causal Instruments under Rational Expectations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 279-286, April.
    11. Marfè, Roberto & Pénasse, Julien, 2024. "Measuring macroeconomic tail risk," Journal of Financial Economics, Elsevier, vol. 156(C).
    12. Robert Barro, 2023. "r Minus g," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 48, pages 1-17, April.
    13. Wang, Yuanping & Mu, Congming, 2019. "Can ambiguity about rare disasters explain equity premium puzzle?," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    14. Geert Bekaert & Eric Engstrom, 2009. "Asset Return Dynamics under Bad Environment Good Environment Fundamentals," NBER Working Papers 15222, National Bureau of Economic Research, Inc.
    15. Christian Julliard & Anisha Ghosh, 2012. "Can Rare Events Explain the Equity Premium Puzzle?," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3037-3076.
    16. Yiqun Mou & Lars A. Lochstoer & Michael Johannes, 2011. "Learning about Consumption Dynamics," 2011 Meeting Papers 306, Society for Economic Dynamics.
    17. Bakshi, Gurdip & Skoulakis, Georgios, 2010. "Do subjective expectations explain asset pricing puzzles?," Journal of Financial Economics, Elsevier, vol. 98(3), pages 462-477, December.
    18. Galindev, Ragchaasuren & Lkhagvasuren, Damba, 2010. "Discretization of highly persistent correlated AR(1) shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1260-1276, July.
    19. Martin Andreasen, 2012. "On the Effects of Rare Disasters and Uncertainty Shocks for Risk Premia in Non-Linear DSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(3), pages 295-316, July.
    20. Juan Carlos Parra‐Alvarez & Olaf Posch & Andreas Schrimpf, 2022. "Peso problems in the estimation of the C‐CAPM," Quantitative Economics, Econometric Society, vol. 13(1), pages 259-313, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.00896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.