IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.06940.html
   My bibliography  Save this paper

Robust Synthetic Control

Author

Listed:
  • Muhammad Jehangir Amjad
  • Devavrat Shah
  • Dennis Shen

Abstract

We present a robust generalization of the synthetic control method for comparative case studies. Like the classical method, we present an algorithm to estimate the unobservable counterfactual of a treatment unit. A distinguishing feature of our algorithm is that of de-noising the data matrix via singular value thresholding, which renders our approach robust in multiple facets: it automatically identifies a good subset of donors, overcomes the challenges of missing data, and continues to work well in settings where covariate information may not be provided. To begin, we establish the condition under which the fundamental assumption in synthetic control-like approaches holds, i.e. when the linear relationship between the treatment unit and the donor pool prevails in both the pre- and post-intervention periods. We provide the first finite sample analysis for a broader class of models, the Latent Variable Model, in contrast to Factor Models previously considered in the literature. Further, we show that our de-noising procedure accurately imputes missing entries, producing a consistent estimator of the underlying signal matrix provided $p = \Omega( T^{-1 + \zeta})$ for some $\zeta > 0$; here, $p$ is the fraction of observed data and $T$ is the time interval of interest. Under the same setting, we prove that the mean-squared-error (MSE) in our prediction estimation scales as $O(\sigma^2/p + 1/\sqrt{T})$, where $\sigma^2$ is the noise variance. Using a data aggregation method, we show that the MSE can be made as small as $O(T^{-1/2+\gamma})$ for any $\gamma \in (0, 1/2)$, leading to a consistent estimator. We also introduce a Bayesian framework to quantify the model uncertainty through posterior probabilities. Our experiments, using both real-world and synthetic datasets, demonstrate that our robust generalization yields an improvement over the classical synthetic control method.

Suggested Citation

  • Muhammad Jehangir Amjad & Devavrat Shah & Dennis Shen, 2017. "Robust Synthetic Control," Papers 1711.06940, arXiv.org.
  • Handle: RePEc:arx:papers:1711.06940
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.06940
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    2. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    3. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2011. "Synth: An R Package for Synthetic Control Methods in Comparative Case Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i13).
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    6. Aldous, David J., 1981. "Representations for partially exchangeable arrays of random variables," Journal of Multivariate Analysis, Elsevier, vol. 11(4), pages 581-598, December.
    7. Bibek Adhikari & James Alm, 2016. "Evaluating the Economic Effects of Flat Tax Reforms Using Synthetic Control Methods," Southern Economic Journal, John Wiley & Sons, vol. 83(2), pages 437-463, October.
    8. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    9. Andreas Billmeier & Tommaso Nannicini, 2013. "Assessing Economic Liberalization Episodes: A Synthetic Control Approach," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 983-1001, July.
    10. Hüseyin Aytuğ & Merve Mavuş Kütük & Arif Oduncu & Sübidey Togan, 2017. "Twenty Years of the EU-Turkey Customs Union: A Synthetic Control Method Analysis," Journal of Common Market Studies, Wiley Blackwell, vol. 55(3), pages 419-431, May.
    11. repec:wly:soecon:v:83:2:y:2016:p:437-463 is not listed on IDEAS
    12. Ferman, Bruno & Pinto, Cristine Campos de Xavier, 2016. "Revisiting the synthetic control estimator," Textos para discussão 421, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    13. Noémi Kreif & Richard Grieve & Dominik Hangartner & Alex James Turner & Silviya Nikolova & Matt Sutton, 2016. "Examination of the Synthetic Control Method for Evaluating Health Policies with Multiple Treated Units," Health Economics, John Wiley & Sons, Ltd., vol. 25(12), pages 1514-1528, December.
    14. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    15. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    2. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    3. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
    4. Furno, Marilena, 2021. "The synthetic control approach: Multivalued treatments at the quantiles," Research in Economics, Elsevier, vol. 75(1), pages 7-20.
    5. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    6. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    2. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    3. Samuel Verevis & Murat Üngör, 2021. "What has New Zealand gained from The FTA with China?: Two counterfactual analyses†," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(1), pages 20-50, February.
    4. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    5. Kaul, Ashok & Klößner, Stefan & Pfeifer, Gregor & Schieler, Manuel, 2015. "Synthetic Control Methods: Never Use All Pre-Intervention Outcomes Together With Covariates," MPRA Paper 83790, University Library of Munich, Germany.
    6. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2021. "Decoupling synthetic control methods to ensure stability, accuracy and meaningfulness," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 549-584, December.
    7. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    8. Christoph F. Kurz & Martin Rehm & Rolf Holle & Christina Teuner & Michael Laxy & Larissa Schwarzkopf, 2019. "The effect of bariatric surgery on health care costs: A synthetic control approach using Bayesian structural time series," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1293-1307, November.
    9. Tomasz Serwach, 2023. "The European Union and within‐country income inequalities. The case of the new member states," The World Economy, Wiley Blackwell, vol. 46(7), pages 1890-1939, July.
    10. Tomasz Serwach, 2022. "The European Union and within-country income inequalities. The case of the New Member States," Working Papers hal-03548416, HAL.
    11. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    12. Alice Lépissier & Matto Mildenberger, 2021. "Unilateral climate policies can substantially reduce national carbon pollution," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    13. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    14. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    15. Nuno Garoupa & Rok Spruk, 2024. "Populist Constitutional Backsliding and Judicial Independence: Evidence from Turkiye," Papers 2410.02439, arXiv.org.
    16. Ferman, Bruno & Pinto, Cristine, 2016. "Revisiting the Synthetic Control Estimator," MPRA Paper 73982, University Library of Munich, Germany.
    17. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2020. "Ensuring Stability, Accuracy and Meaningfulness in Synthetic Control Methods: The Regularized SHAP-Distance Method," IREA Working Papers 202005, University of Barcelona, Research Institute of Applied Economics, revised Apr 2020.
    18. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    19. Francesca Caselli & Matilde Faralli & Paolo Manasse & Ugo Panizza, 2021. "On the Benefits of Repaying," IMF Working Papers 2021/233, International Monetary Fund.
    20. Cummins Joseph & Miller Douglas L. & Smith Brock & Simon David, 2024. "Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 67-95, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.06940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.