IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.03242.html
   My bibliography  Save this paper

Conditional-Mean Hedging Under Transaction Costs in Gaussian Models

Author

Listed:
  • Tommi Sottinen
  • Lauri Viitasaari

Abstract

We consider so-called regular invertible Gaussian Volterra processes and derive a formula for their prediction laws. Examples of such processes include the fractional Brownian motions and the mixed fractional Brownian motions. As an application, we consider conditional-mean hedging under transaction costs in Black-Scholes type pricing models where the Brownian motion is replaced with a more general regular invertible Gaussian Volterra process.

Suggested Citation

  • Tommi Sottinen & Lauri Viitasaari, 2017. "Conditional-Mean Hedging Under Transaction Costs in Gaussian Models," Papers 1708.03242, arXiv.org.
  • Handle: RePEc:arx:papers:1708.03242
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.03242
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. repec:dau:papers:123456789/4654 is not listed on IDEAS
    4. Wang, Xiao-Tian & Zhu, En-Hui & Tang, Ming-Ming & Yan, Hai-Gang, 2010. "Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian–fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 445-451.
    5. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
    6. Gapeev Pavel V. & Sottinen Tommi & Valkeila Esko, 2011. "Robust replication in H-self-similar Gaussian market models under uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 37-50, March.
    7. Foad Shokrollahi & Tommi Sottinen, 2017. "Hedging in fractional Black-Scholes model with transaction costs," Papers 1706.01534, arXiv.org, revised Jul 2017.
    8. Emmanuel Denis & Yuri Kabanov, 2010. "Mean square error for the Leland–Lott hedging strategy: convex pay-offs," Finance and Stochastics, Springer, vol. 14(4), pages 625-667, December.
    9. Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
    10. Wang, Xiao-Tian & Yan, Hai-Gang & Tang, Ming-Ming & Zhu, En-Hui, 2010. "Scaling and long-range dependence in option pricing III: A fractional version of the Merton model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 452-458.
    11. Sottinen, Tommi & Viitasaari, Lauri, 2017. "Prediction law of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 155-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foad Shokrollahi & Tommi Sottinen, 2017. "Hedging in fractional Black-Scholes model with transaction costs," Papers 1706.01534, arXiv.org, revised Jul 2017.
    2. Shokrollahi, Foad & Sottinen, Tommi, 2017. "Hedging in fractional Black–Scholes model with transaction costs," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 85-91.
    3. Hamidreza Maleki Almani & Foad Shokrollahi & Tommi Sottinen, 2024. "Hedging in Jump Diffusion Model with Transaction Costs," Papers 2408.10785, arXiv.org.
    4. Tommi Sottinen & Lauri Viitasaari, 2018. "Conditional-Mean Hedging Under Transaction Costs In Gaussian Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-15, March.
    5. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    6. Wang, Wensheng, 2019. "Asymptotics for discrete time hedging errors under fractional Black–Scholes models," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 160-170.
    7. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    8. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    9. Foad Shokrollahi, 2017. "Fractional delta hedging strategy for pricing currency options with transaction costs," Papers 1702.00037, arXiv.org.
    10. Guo, Zhidong & Yuan, Hongjun, 2014. "Pricing European option under the time-changed mixed Brownian-fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 73-79.
    11. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    12. Foad Shokrollahi, 2017. "The valuation of European option with transaction costs by mixed fractional Merton model," Papers 1702.00152, arXiv.org.
    13. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    14. Foad Shokrollahi, 2017. "Pricing compound and extendible options under mixed fractional Brownian motion with jumps," Papers 1708.04829, arXiv.org.
    15. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    16. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    17. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    18. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    19. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    20. Kyong-Hui Kim & Myong-Guk Sin, 2013. "Efficient hedging in general Black-Scholes model," Papers 1308.6387, arXiv.org, revised Mar 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.03242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.