Oracle Estimation of a Change Point in High Dimensional Quantile Regression
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018. "Oracle Estimation of a Change Point in High-Dimensional Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1184-1194, July.
References listed on IDEAS
- Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
- Bruce E. Hansen, 2000.
"Sample Splitting and Threshold Estimation,"
Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
- Bruce E. Hansen, 1996. "Sample Splitting and Threshold Estimation," Boston College Working Papers in Economics 319., Boston College Department of Economics, revised 12 May 1998.
- Li, Dong & Ling, Shiqing, 2012. "On the least squares estimation of multiple-regime threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 167(1), pages 240-253.
- Hansen, Bruce E, 1996.
"Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis,"
Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
- Hansen, B.E., 1991. "Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis," RCER Working Papers 296, University of Rochester - Center for Economic Research (RCER).
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
- David Card & Alexandre Mas & Jesse Rothstein, 2008.
"Tipping and the Dynamics of Segregation,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(1), pages 177-218.
- David Card & Alexandre Mas & Jesse Rothstein, 2007. "Tipping and the Dynamics of Segregation," Working Papers 147, Princeton University, Department of Economics, Center for Economic Policy Studies..
- David Card & Alexandre Mas & Jesse Rothstein, 2007. "Tipping and the Dynamics of Segregation," NBER Working Papers 13052, National Bureau of Economic Research, Inc.
- He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016.
"The lasso for high dimensional regression with a possible change point,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers CWP26/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
- Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
- Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
- Alexandre Belloni & Victor Chernozhukov, 2009.
"L1-Penalized Quantile Regression in High-Dimensional Sparse Models,"
Papers
0904.2931, arXiv.org, revised Sep 2019.
- Alexandre Belloni & Victor Chernozhukov, 2009. "L1-Penalized quantile regression in high-dimensional sparse models," CeMMAP working papers CWP10/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lee, Sokbae & Seo, Myung Hwan, 2008.
"Semiparametric estimation of a binary response model with a change-point due to a covariate threshold,"
Journal of Econometrics, Elsevier, vol. 144(2), pages 492-499, June.
- Lee, Sokbae & Seo, Myung Hwan, 2007. "Semiparametric estimation of a binary response model with a change-point due to a covariate threshold," LSE Research Online Documents on Economics 6806, London School of Economics and Political Science, LSE Library.
- Sokbae Lee & Myunghwan Seo, 2007. "Semiparametric Estimation Of A Binaryresponse Model With A Change-Pointdue To A Covariate Threshold," STICERD - Econometrics Paper Series 516, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2017.
"Sharp Threshold Detection Based on Sup-Norm Error Rates in High-Dimensional Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 250-264, April.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2015. "Sharp Threshold Detection Based on Sup-norm Error rates in High-dimensional Models," CREATES Research Papers 2015-10, Department of Economics and Business Economics, Aarhus University.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2015. "Sharp Threshold Detection based on Sup-Norm Error Rates in High-dimensional Models," Tinbergen Institute Discussion Papers 15-019/III, Tinbergen Institute.
- Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
- Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
- Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011.
"Testing for Threshold Effects in Regression Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2010. "Testing for threshold effects in regression models," CeMMAP working papers CWP36/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wayne Yuan Gao & Sheng Xu & Kan Xu, 2020. "Two-Stage Maximum Score Estimator," Papers 2009.02854, arXiv.org, revised Sep 2022.
- Lamarche, Carlos & Parker, Thomas, 2023.
"Wild bootstrap inference for penalized quantile regression for longitudinal data,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
- Carlos Lamarche & Thomas Parker, 2020. "Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data," Papers 2004.05127, arXiv.org, revised May 2022.
- Carlos Lamarche & Thomas Parker, 2022. "Wild Bootstrap Inference For Penalized Quantile Regression For Longitudinal Data," Working Papers 22003 Classification-C15,, University of Waterloo, Department of Economics.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018.
"Factor-Driven Two-Regime Regression,"
Department of Economics Working Papers
2018-14, McMaster University.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2019. "Factor-Driven Two-Regime Regression," Working Paper Series no128, Institute of Economic Research, Seoul National University.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018. "Factor-Driven Two-Regime Regression," Papers 1810.11109, arXiv.org, revised Sep 2020.
- Chen, Le-Yu & Lee, Sokbae, 2023.
"Sparse quantile regression,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
- Le-Yu Chen & Sokbae (Simon) Lee, 2020. "Sparse Quantile Regression," CeMMAP working papers CWP30/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae Lee, 2020. "Sparse Quantile Regression," Papers 2006.11201, arXiv.org, revised Mar 2023.
- Abhimanyu Gupta & Myung Hwan Seo, 2023.
"Robust Inference on Infinite and Growing Dimensional Time‐Series Regression,"
Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
- Abhimanyu Gupta & Myung Hwan Seo, 2019. "Robust Inference on Infinite and Growing Dimensional Time Series Regression," Papers 1911.08637, arXiv.org, revised Apr 2023.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Gabriela Ciuperca & Matúš Maciak, 2020. "Change‐point detection in a linear model by adaptive fused quantile method," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 425-463, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016.
"The lasso for high dimensional regression with a possible change point,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers CWP26/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
- Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
- Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
- Wang, Yibo & Karunamuni, Rohana J., 2022. "High-dimensional robust regression with Lq-loss functions," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Hidalgo, Javier & Lee, Jungyoon & Seo, Myung Hwan, 2019.
"Robust inference for threshold regression models,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 291-309.
- Hidalgo, Javier & Lee, Jungyoon & Seo, Myung Hwan, 2019. "Robust inference for threshold regression models," LSE Research Online Documents on Economics 100333, London School of Economics and Political Science, LSE Library.
- Bruce E. Hansen, 2017. "Regression Kink With an Unknown Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 228-240, April.
- Luo, Bin & Gao, Xiaoli, 2022. "High-dimensional robust approximated M-estimators for mean regression with asymmetric data," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
- Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
- repec:cep:stiecm:/2014/577 is not listed on IDEAS
- Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
- Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
- Chan, Ngai Hang & Yau, Chun Yip & Zhang, Rong-Mao, 2015. "LASSO estimation of threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 285-296.
- Fan, Zengyan & Lian, Heng, 2018. "Quantile regression for additive coefficient models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 54-64.
- Miao, Ke & Su, Liangjun & Wang, Wendun, 2020.
"Panel threshold regressions with latent group structures,"
Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
- Ke, Miao & Su, Liangjun & Wang, Wendun, 2019. "Panel threshold regressions with latent group structures," Economics and Statistics Working Papers 13-2019, Singapore Management University, School of Economics.
- Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
- Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019.
"Inference of Break-Points in High-Dimensional Time Series,"
IRTG 1792 Discussion Papers
2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2020. "Inference of breakpoints in high-dimensional time series," IRTG 1792 Discussion Papers 2020-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Rothfelder, Mario & Boldea, Otilia, 2016.
"Testing for a Threshold in Models with Endogenous Regressors,"
Other publications TiSEM
40ca581a-e228-49ae-911f-e, Tilburg University, School of Economics and Management.
- Mario P. Rothfelder & Otilia Boldea, 2022. "Testing for a Threshold in Models with Endogenous Regressors," Papers 2207.10076, arXiv.org.
- Rothfelder, Mario P. & Boldea, Otilia, 2022. "Testing for a Threshold in Models with Endogenous Regressors," Other publications TiSEM 674deead-8826-450a-8f56-f, Tilburg University, School of Economics and Management.
- Rothfelder, Mario & Boldea, Otilia, 2019. "Testing for a Threshold in Models with Endogenous Regressors," Other publications TiSEM 94a7c921-f27f-43a0-82f4-4, Tilburg University, School of Economics and Management.
- Rothfelder, Mario & Boldea, Otilia, 2016. "Testing for a Threshold in Models with Endogenous Regressors," Discussion Paper 2016-029, Tilburg University, Center for Economic Research.
- Rothfelder, Mario & Boldea, Otilia, 2019. "Testing for a Threshold in Models with Endogenous Regressors," Discussion Paper 2019-030, Tilburg University, Center for Economic Research.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-01-22 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.00235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.