IDEAS home Printed from https://ideas.repec.org/p/ags/uwarer/270768.html
   My bibliography  Save this paper

Do Professional Forecasters Pay Attention to Data Releases?

Author

Listed:
  • Clements, Michael P.

Abstract

We present a novel approach to assessing the attentiveness of professional forecasters to news about the macroeconomy. We Önd evidence that professional forecasters, taken as a group, do not always update their estimates of the current state of the economy to reáect the latest releases of revised estimates of key data.

Suggested Citation

  • Clements, Michael P., 2011. "Do Professional Forecasters Pay Attention to Data Releases?," Economic Research Papers 270768, University of Warwick - Department of Economics.
  • Handle: RePEc:ags:uwarer:270768
    DOI: 10.22004/ag.econ.270768
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/270768/files/twerp_956.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/270768/files/twerp_956.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.270768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    2. Lucas, Robert E, Jr, 1973. "Some International Evidence on Output-Inflation Tradeoffs," American Economic Review, American Economic Association, vol. 63(3), pages 326-334, June.
    3. Victor Zarnowitz, 1969. "The New ASA–NBER Survey of Forecasts by Economic Statisticians," NBER Chapters, in: Supplement to NBER Report Four, pages 1-8, National Bureau of Economic Research, Inc.
    4. Bonham, Carl S & Cohen, Richard H, 2001. "To Aggregate, Pool, or Neither: Testing the Rational-Expectations Hypothesis Using Survey Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 278-291, July.
    5. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    6. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    7. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    8. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270, National Bureau of Economic Research, Inc.
    9. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    10. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    11. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    12. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    13. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    14. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    15. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    16. Michael Woodford, 2001. "Imperfect Common Knowledge and the Effects of Monetary Policy," NBER Working Papers 8673, National Bureau of Economic Research, Inc.
    17. Victor Zarnowitz & Phillip Braun, 1993. "Twenty-two Years of the NBER-ASA Quarterly Economic Outlook Surveys: Aspects and Comparisons of Forecasting Performance," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 11-94, National Bureau of Economic Research, Inc.
    18. Bartosz Mackowiak & Mirko Wiederholt, 2009. "Optimal Sticky Prices under Rational Inattention," American Economic Review, American Economic Association, vol. 99(3), pages 769-803, June.
    19. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    20. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    21. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    22. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    23. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    24. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, August.
    25. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    26. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedersen, Michael, 2015. "What affects the predictions of private forecasters? The role of central bank forecasts in Chile," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1043-1055.
    2. de Mendonça, Helder Ferreira & Vereda, Luciano & Araujo, Mateus de Azevedo, 2022. "What type of information calls the attention of forecasters? Evidence from survey data in an emerging market," Journal of International Money and Finance, Elsevier, vol. 129(C).
    3. Katharina Glass & Ulrich Fritsche, 2015. "Real-time Macroeconomic Data and Uncertainty," Macroeconomics and Finance Series 201406, University of Hamburg, Department of Socioeconomics.
    4. Ilek, Alex, 2021. "Are monetary surprises effective? The view of professional forecasters in Israel," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 516-530.
    5. Nikos Apokoritis & Gabriele Galati & Richhild Moessner & Federica Teppa, 2019. "Inflation expectations anchoring: new insights from micro evidence of a survey at high-frequency and of distributions," BIS Working Papers 809, Bank for International Settlements.
    6. Meade, Nigel & Driver, Ciaran, 2023. "Differing behaviours of forecasters of UK GDP growth," International Journal of Forecasting, Elsevier, vol. 39(2), pages 772-790.
    7. Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
    8. Ullrich Heilemann & Karsten Müller, 2018. "Wenig Unterschiede – Zur Treffsicherheit Internationaler Prognosen und Prognostiker [Few differences—on the accuracy of international forecasts and forecaster]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(3), pages 195-233, December.
    9. Heilemann Ullrich & Schnorr-Bäcker Susanne, 2017. "Could the start of the German recession 2008–2009 have been foreseen? Evidence from Real-Time Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 237(1), pages 29-62, February.
    10. Hossein Hassani & Jan Coreman & Saeed Heravi & Joshy Easaw, 2018. "Forecasting Inflation Rate: Professional Against Academic, Which One is More Accurate," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 631-646, September.
    11. Keith Sill, 2014. "Forecast disagreement in the Survey of Professional Forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Q2, pages 15-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    2. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    3. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    4. Clements, Michael P, 2012. "Subjective and Ex Post Forecast Uncertainty : US Inflation and Output Growth," The Warwick Economics Research Paper Series (TWERPS) 995, University of Warwick, Department of Economics.
    5. Clements, Michael P., 2014. "Probability distributions or point predictions? Survey forecasts of US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 99-117.
    6. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    7. Clements, Michael P., 2010. "Why are survey forecasts superior to model forecasts?," Economic Research Papers 270770, University of Warwick - Department of Economics.
    8. An, Zidong & Zheng, Xinye, 2023. "Diligent forecasters can make accurate predictions despite disagreeing with the consensus," Economic Modelling, Elsevier, vol. 125(C).
    9. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    10. Michael P Clements, 2014. "Assessing the Evidence of Macro- Forecaster Herding: Forecasts of Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-12, Henley Business School, University of Reading.
    11. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    12. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    13. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    14. Michael Clements, 2016. "Are Macro-Forecasters Essentially The Same? An Analysis of Disagreement, Accuracy and Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2016-08, Henley Business School, University of Reading.
    15. Paul Hubert, 2014. "FOMC Forecasts as a Focal Point for Private Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(7), pages 1381-1420, October.
    16. Zohar, Osnat, 2024. "Cyclicality of uncertainty and disagreement," Journal of Monetary Economics, Elsevier, vol. 143(C).
    17. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
    18. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    19. Stefano Eusepi & Richard Crump & Emanuel Moench & Philippe Andrade, 2014. "Noisy Information and Fundamental Disagreement," 2014 Meeting Papers 797, Society for Economic Dynamics.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    More about this item

    Keywords

    Financial Economics;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uwarer:270768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.