IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/333404.html
   My bibliography  Save this paper

Climate Change, The Food Problem, and the Challenge of Adaptation through Sectoral Reallocation

Author

Listed:
  • Nath, Ishan

Abstract

This paper combines local temperature treatment effects with a quantitative macroeconomic model to assess the potential for global reallocation between agricultural and non-agricultural production to reduce the costs of climate change. First, I use firm-level panel data from a wide range of countries to show that extreme heat reduces productivity less in manufacturing and services than in agriculture, implying that hot countries could achieve large potential gains through adapting to global warming by shifting labor toward manufacturing and increasing imports of food. To investigate the likelihood that such gains will be realized, I embed the estimated productivity effects in a model of sectoral specialization and trade covering 158 countries. Simulations suggest that climate change does little to alter the geography of agricultural production, however, as high trade barriers in developing countries temper the influence of shifting comparative advantage. Instead, climate change accentuates the existing pattern, known as “the food problem,” in which poor countries specialize heavily in relatively low productivity agricultural sectors to meet subsistence consumer needs. The productivity effects of climate change reduce welfare by 6-10% for the poorest quartile of the world with trade barriers held at current levels, but by nearly 70% less in an alternative policy counterfactual that moves low-income countries to OECD levels of trade openness.

Suggested Citation

  • Nath, Ishan, 2022. "Climate Change, The Food Problem, and the Challenge of Adaptation through Sectoral Reallocation," Conference papers 333404, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:333404
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333404/files/11008.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Bloom & Mirko Draca & John Van Reenen, 2016. "Trade Induced Technical Change? The Impact of Chinese Imports on Innovation, IT and Productivity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(1), pages 87-117.
    2. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    3. David Rezza Baqaee & Emmanuel Farhi, 2019. "The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem," Econometrica, Econometric Society, vol. 87(4), pages 1155-1203, July.
    4. Matsuyama, Kiminori, 1992. "Agricultural productivity, comparative advantage, and economic growth," Journal of Economic Theory, Elsevier, vol. 58(2), pages 317-334, December.
    5. Garth Heutel & Nolan H. Miller & David Molitor, 2021. "Adaptation and the Mortality Effects of Temperature across U.S. Climate Regions," The Review of Economics and Statistics, MIT Press, vol. 103(4), pages 740-753, October.
    6. Ariel Burstein & Jonathan Vogel, 2017. "International Trade, Technology, and the Skill Premium," Journal of Political Economy, University of Chicago Press, vol. 125(5), pages 1356-1412.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    9. Tasso Adamopoulos & Diego Restuccia, 2022. "Geography and Agricultural Productivity: Cross-Country Evidence from Micro Plot-Level Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(4), pages 1629-1653.
    10. Charles R. Hulten, 1978. "Growth Accounting with Intermediate Inputs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 45(3), pages 511-518.
    11. Gollin, Douglas & Parente, Stephen L. & Rogerson, Richard, 2007. "The food problem and the evolution of international income levels," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1230-1255, May.
    12. Charles I. Jones & Peter J. Klenow, 2016. "Beyond GDP? Welfare across Countries and Time," American Economic Review, American Economic Association, vol. 106(9), pages 2426-2457, September.
    13. Treb Allen & Costas Arkolakis & Xiangliang Li, 2020. "On the Equilibrium Properties of Network Models with Heterogeneous Agents," NBER Working Papers 27837, National Bureau of Economic Research, Inc.
    14. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    15. David Lagakos & Michael E. Waugh, 2013. "Selection, Agriculture, and Cross-Country Productivity Differences," American Economic Review, American Economic Association, vol. 103(2), pages 948-980, April.
    16. E. Somanathan & Rohini Somanathan & Anant Sudarshan & Meenu Tewari, 2021. "The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1797-1827.
    17. Laura Alfaro & Maggie X. Chen, 2018. "Selection and Market Reallocation: Productivity Gains from Multinational Production," American Economic Journal: Economic Policy, American Economic Association, vol. 10(2), pages 1-38, May.
    18. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    19. Teignier, Marc, 2018. "The role of trade in structural transformation," Journal of Development Economics, Elsevier, vol. 130(C), pages 45-65.
    20. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    21. Lint Barrage, 2020. "The Fiscal Costs of Climate Change," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 107-112, May.
    22. Arnaud Costinot & Dave Donaldson & Cory Smith, 2016. "Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields around the World," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 205-248.
    23. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    24. repec:hoo:wpaper:e-92-3 is not listed on IDEAS
    25. Jonathan I. Dingel & Kyle C. Meng & Solomon M. Hsiang, 2019. "Spatial Correlation, Trade, and Inequality: Evidence from the Global Climate," NBER Working Papers 25447, National Bureau of Economic Research, Inc.
    26. Lyu, Changjiang & Wang, Kemin & Zhang, Frank & Zhang, Xin, 2018. "GDP management to meet or beat growth targets," Journal of Accounting and Economics, Elsevier, vol. 66(1), pages 318-338.
    27. Matthew R. Smith & Samuel S. Myers, 2018. "Impact of anthropogenic CO2 emissions on global human nutrition," Nature Climate Change, Nature, vol. 8(9), pages 834-839, September.
    28. Tatyana Deryugina & Solomon M. Hsiang, 2014. "Does the Environment Still Matter? Daily Temperature and Income in the United States," NBER Working Papers 20750, National Bureau of Economic Research, Inc.
    29. Trevor Tombe, 2015. "The Missing Food Problem: Trade, Agriculture, and International Productivity Differences," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 226-258, July.
    30. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remi Jedwab & Federico Haslop & Roman Zarate & Carlos Rodriguez-Castelan, 2023. "The Effects of Climate Change in the Poorest Countries: Evidence from the Permanent Shrinking of Lake Chad," Working Papers 2023-06, The George Washington University, Institute for International Economic Policy.
    2. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    3. Christoph Albert & Paula Bustos & Jacopo Ponticelli, 2021. "The Effects of Climate Change on Labor and Capital Reallocation," NBER Working Papers 28995, National Bureau of Economic Research, Inc.
    4. repec:fip:fedrwp:98029 is not listed on IDEAS
    5. Juanma Castro-Vincenzi & Gaurav Khanna & Nicolas Morales & Nitya Pandalai-Nayar, 2024. "Weathering the Storm: Supply Chains and Climate Risk," NBER Working Papers 32218, National Bureau of Economic Research, Inc.
    6. Christoph Albert & Paula Bustos & Jacopo Ponticelli, 2024. "The effects of climate change on labor and capital reallocation," Economics Working Papers 1887, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Christoph Albert & Paula Bustos & Jacopo Ponticelli, 2021. "The Effects of Climate Change on Labor and Capital Reallocation," NBER Working Papers 28995, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishan Nath, 2021. "Climate Change, The Food Problem, and the Challenge of Adaptation through Sectoral Reallocation," Working Papers 21-29, Center for Economic Studies, U.S. Census Bureau.
    2. Ishan B. Nath, 2020. "The Food Problem and the Aggregate Productivity Consequences of Climate Change," NBER Working Papers 27297, National Bureau of Economic Research, Inc.
    3. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    4. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    5. Osberghaus, Daniel & Schenker, Oliver, 2022. "International trade and the transmission of temperature shocks," ZEW Discussion Papers 22-035, ZEW - Leibniz Centre for European Economic Research.
    6. Wei, Xiahai & Li, Jianan & Liu, Hongyou & Wan, Jiangtao, 2023. "Temperature and outdoor productivity: Evidence from professional soccer players," Journal of Asian Economics, Elsevier, vol. 87(C).
    7. Acevedo, Sebastian & Mrkaic, Mico & Novta, Natalija & Pugacheva, Evgenia & Topalova, Petia, 2020. "The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact?," Journal of Macroeconomics, Elsevier, vol. 65(C).
    8. Tasso Adamopoulos & Fernando Leibovici, 2024. "Trade Risk and Food Security," Working Papers 2024-004, Federal Reserve Bank of St. Louis, revised Feb 2024.
    9. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    10. Aguilar-Gomez, Sandra & Gutierrez, Emilio & Heres, David & Jaume, David & Tobal, Martin, 2024. "Thermal stress and financial distress: Extreme temperatures and firms’ loan defaults in Mexico," Journal of Development Economics, Elsevier, vol. 168(C).
    11. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    12. Solomon Hsiang & Paulina Oliva & Reed Walker, 2019. "The Distribution of Environmental Damages," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(1), pages 83-103.
    13. Tarsia, Romano, 2024. "Heterogeneous effects of weather shocks on firm economic performance," LSE Research Online Documents on Economics 124251, London School of Economics and Political Science, LSE Library.
    14. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    15. Dang, Hai-Anh H & Hallegatte, Stephane & Trinh, Trong-Anh, 2023. "Does Global Warming Worsen Poverty and Inequality? An Updated Review," IZA Discussion Papers 16570, Institute of Labor Economics (IZA).
    16. Barker, Tom & Üngör, Murat, 2019. "Vietnam: The next asian Tiger?," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 96-118.
    17. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    18. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    19. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    20. Jakob Lehr & Katrin Rehdanz, 2023. "The Effect of Temperature on Energy Use, CO2 Emissions, and Economic Performance in German Industry," CRC TR 224 Discussion Paper Series crctr224_2023_489, University of Bonn and University of Mannheim, Germany.

    More about this item

    Keywords

    International Relations/Trade; Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:333404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.