IDEAS home Printed from https://ideas.repec.org/p/aah/create/2014-39.html
   My bibliography  Save this paper

Outlier detection algorithms for least squares time series regression

Author

Listed:
  • Søren Johansen

    (University of Copenhagen and CREATES)

  • Bent Nielsen

    (Nuffield College & Department of Economics, University of Oxford & Institute for New Economic Thinking at the Oxford Martin School.)

Abstract

We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Saturation, iterated 1-step Huber-skip M-estimators and the Forward Search. These methods classify observations as outliers or not. From the asymptotic results we establish a new asymptotic theory for the gauge of these methods, which is the expected frequency of falsely detected outliers. The asymptotic theory involves normal distribution results and Poisson distribution results. The theory is applied to a time series data set.

Suggested Citation

  • Søren Johansen & Bent Nielsen, 2014. "Outlier detection algorithms for least squares time series regression," CREATES Research Papers 2014-39, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2014-39
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/14/rp14_39.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    2. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    3. Kathryn Graddy, 2006. "Markets: The Fulton Fish Market," Journal of Economic Perspectives, American Economic Association, vol. 20(2), pages 207-220, Spring.
    4. Kilian, Lutz & Demiroglu, Ufuk, 2000. "Residual-Based Tests for Normality in Autoregressions: Asymptotic Theory and Simulation Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 40-50, January.
    5. Cavaliere, Giuseppe & Georgiev, Iliyan, 2013. "Exploiting Infinite Variance Through Dummy Variables In Nonstationary Autoregressions," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1162-1195, December.
    6. Bollerslev, Tim & Russell, Jeffrey & Watson, Mark (ed.), 2010. "Volatility and Time Series Econometrics: Essays in Honor of Robert Engle," OUP Catalogue, Oxford University Press, number 9780199549498.
    7. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    8. Liese, F. & Vajda, I., 1994. "Consistency of M-Estimates in General Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 93-114, July.
    9. E ric E ngler & B ent N ielsen, 2009. "The empirical process of autoregressive residuals," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 367-381, July.
    10. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    11. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    12. Kathryn Graddy, 1995. "Testing for Imperfect Competition at the Fulton Fish Market," RAND Journal of Economics, The RAND Corporation, vol. 26(1), pages 75-92, Spring.
    13. Chen, X. R. & Wu, Y. H., 1988. "Strong consistency of M-estimates in linear models," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 116-130, October.
    14. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    15. Hendry David F & Mizon Grayham E, 2011. "Econometric Modelling of Time Series with Outlying Observations," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-26, February.
    16. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    17. repec:bot:quadip:118 is not listed on IDEAS
    18. Castle, Jennifer & Shephard, Neil (ed.), 2009. "The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry," OUP Catalogue, Oxford University Press, number 9780199237197.
    19. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    20. Bent Nielsen & Soren Johansen, 2010. "Discussion of The Forward Search: Theory and Data Analysis," Economics Series Working Papers 2010-W02, University of Oxford, Department of Economics.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
    2. David H. Bernstein & Bent Nielsen, 2019. "Asymptotic Theory for Cointegration Analysis When the Cointegration Rank Is Deficient," Econometrics, MDPI, vol. 7(1), pages 1-24, January.
    3. Bent Nielsen & Andrew Whitby, 2015. "A Joint Chow Test for Structural Instability," Econometrics, MDPI, vol. 3(1), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Johansen & Bent Nielsen, 2014. "Optimal hedging with the cointegrated vector autoregressive model," Discussion Papers 14-23, University of Copenhagen. Department of Economics.
    2. Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
    3. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    4. Vassilios Bazinas & Bent Nielsen, 2022. "Causal Transmission in Reduced-Form Models," Econometrics, MDPI, vol. 10(2), pages 1-25, March.
    5. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    6. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    7. Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.
    8. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
    9. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.
    10. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    11. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    12. Josh R. Stillwagon, 2015. "TIPS and the VIX: Non-linear Spillovers from Financial Panic to Breakeven Inflation," Working Papers 1502, Trinity College, Department of Economics.
    13. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    14. Søren Johansen & Bent Nielsen, 2013. "Outlier Detection in Regression Using an Iterated One-Step Approximation to the Huber-Skip Estimator," Econometrics, MDPI, vol. 1(1), pages 1-18, May.
    15. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    16. Jennifer Castle & David Hendry, 2010. "Automatic Selection for Non-linear Models," Economics Series Working Papers 473, University of Oxford, Department of Economics.
    17. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    18. Hendry David F & Mizon Grayham E, 2011. "Econometric Modelling of Time Series with Outlying Observations," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-26, February.
    19. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    20. Castle, Jennifer L. & Hendry, David F., 2009. "The long-run determinants of UK wages, 1860-2004," Journal of Macroeconomics, Elsevier, vol. 31(1), pages 5-28, March.

    More about this item

    Keywords

    Huber-skip M-estimators; 1-step Huber-skip M-estimators; iteration; Forward Search; Impulse Indicator Saturation; Robusti?ed Least Squares; weighted and marked empirical processes; iterated martingale inequality; gauge;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2014-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.