IDEAS home Printed from https://ideas.repec.org/h/spr/stcchp/978-3-540-79128-7_8.html
   My bibliography  Save this book chapter

Acyclic Domains of Linear Orders: A Survey

In: The Mathematics of Preference, Choice and Order

Author

Listed:
  • Bernard Monjardet

    (CES, Université Paris I Panthéon Sorbonne)

Abstract

A = {1,2…i, j,k…n} is a finite set of n elements that I will generally call alternatives (but which could also be called issues, decisions, outcomes, candidates, objects, etc.). The elements of A will be also denoted by letters like x,y, z etc. A subset of cardinality p of A will be called a p-set. A 2 (respectively, A 3) denotes the set of all ordered pairs (x,y) (respectively, ordered triples (x,y, z) written for convenience as xyz) of A. When the elements of A are denoted by the n first integers, P 2(n) denotes the set of the n(n- 1)/2 ordered pairs (i

Suggested Citation

  • Bernard Monjardet, 2009. "Acyclic Domains of Linear Orders: A Survey," Studies in Choice and Welfare, in: Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), The Mathematics of Preference, Choice and Order, pages 139-160, Springer.
  • Handle: RePEc:spr:stcchp:978-3-540-79128-7_8
    DOI: 10.1007/978-3-540-79128-7_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. B. Monjardet, 1978. "An Axiomatic Theory of Tournament Aggregation," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 334-351, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Souvik & Sadhukhan, Soumyarup, 2021. "A unified characterization of the randomized strategy-proof rules," Journal of Economic Theory, Elsevier, vol. 197(C).
    2. Olivier Hudry & Bernard Monjardet, 2010. "Consensus theories: An oriented survey," Documents de travail du Centre d'Economie de la Sorbonne 10057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Gilbert Laffond & Jean Lainé, 2014. "Triple-consistent social choice and the majority rule," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 784-799, July.
    4. Saari, Donald G., 2014. "Unifying voting theory from Nakamura’s to Greenberg’s theorems," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 1-11.
    5. Chatterji, Shurojit & Zeng, Huaxia, 2023. "A taxonomy of non-dictatorial unidimensional domains," Games and Economic Behavior, Elsevier, vol. 137(C), pages 228-269.
    6. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    7. Bernard Monjardet, 2008. ""Mathématique Sociale" and Mathematics. A case study: Condorcet's effect and medians," Post-Print halshs-00309825, HAL.
    8. Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2021. "Towards a classification of maximal peak-pit Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 191-202.
    9. Shurojit Chatterji & Souvik Roy & Soumyarup Sadhukhan & Arunava Sen & Huaxia Zeng, 2021. "Probabilistic Fixed Ballot Rules and Hybrid Domains," Papers 2105.10677, arXiv.org, revised Jan 2022.
    10. Chatterji, Shurojit & Zeng, Huaxia, 2018. "On random social choice functions with the tops-only property," Games and Economic Behavior, Elsevier, vol. 109(C), pages 413-435.
    11. Liu, Peng, 2020. "Random assignments on sequentially dichotomous domains," Games and Economic Behavior, Elsevier, vol. 121(C), pages 565-584.
    12. Alexander Karpov, 2019. "On the Number of Group-Separable Preference Profiles," Group Decision and Negotiation, Springer, vol. 28(3), pages 501-517, June.
    13. Bredereck, Robert & Chen, Jiehua & Woeginger, Gerhard J., 2016. "Are there any nicely structured preference profiles nearby?," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 61-73.
    14. Alexander Karpov & Arkadii Slinko, 2023. "Constructing large peak-pit Condorcet domains," Theory and Decision, Springer, vol. 94(1), pages 97-120, January.
    15. Puppe, Clemens & Slinko, Arkadii, 2024. "Maximal Condorcet domains. A further progress report," Games and Economic Behavior, Elsevier, vol. 145(C), pages 426-450.
    16. Bernard Monjardet, 2006. "Condorcet domains and distributive lattices," Post-Print halshs-00119141, HAL.
    17. Chatterji, Shurojit & Zeng, Huaxia, 2019. "Random mechanism design on multidimensional domains," Journal of Economic Theory, Elsevier, vol. 182(C), pages 25-105.
    18. Clemens Puppe & Arkadii Slinko, 2019. "Condorcet domains, median graphs and the single-crossing property," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(1), pages 285-318, February.
    19. Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2020. "Towards a classification of maximal peak-pit Condorcet domains," Working Paper Series in Economics 144, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    20. Slinko, Arkadii, 2019. "Condorcet domains satisfying Arrow’s single-peakedness," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 166-175.
    21. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    22. Ping Zhan, 2019. "A simple construction of complete single-peaked domains by recursive tiling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 477-488, December.
    23. Shurojit Chatterji & Huaxia Zeng, 2022. "A Taxonomy of Non-dictatorial Unidimensional Domains," Papers 2201.00496, arXiv.org, revised Oct 2022.
    24. Liu, Peng & Zeng, Huaxia, 2019. "Random assignments on preference domains with a tier structure," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 176-194.
    25. Li, Guanhao, 2023. "A classification of peak-pit maximal Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 125(C), pages 42-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miller, Alan D. & Rachmilevitch, Shiran, "undated". "A Behavioral Arrow Theorem," Working Papers WP2012/7, University of Haifa, Department of Economics.
    2. Sholomov, Lev A., 2000. "Explicit form of neutral social decision rules for basic rationality conditions," Mathematical Social Sciences, Elsevier, vol. 39(1), pages 81-107, January.
    3. Georg Nöldeke & Larry Samuelson, 2018. "The Implementation Duality," Econometrica, Econometric Society, vol. 86(4), pages 1283-1324, July.
    4. Bernard Monjardet, 2007. "Some Order Dualities In Logic, Games And Choices," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-12.
    5. Olivier Hudry & Bernard Monjardet, 2010. "Consensus theories: An oriented survey," Documents de travail du Centre d'Economie de la Sorbonne 10057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Boris Mirkin & Trevor I. Fenner, 2019. "Distance and Consensus for Preference Relations Corresponding to Ordered Partitions," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 350-367, July.
    7. Andranik Tangian, 2010. "Computational application of the mathematical theory of democracy to Arrow’s Impossibility Theorem (how dictatorial are Arrow’s dictators?)," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(1), pages 129-161, June.
    8. Fuad Aleskerov, 2005. "The history of social choice in Russia and the Soviet Union," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 25(2), pages 419-431, December.
    9. Pierre Batteau, 1978. "Stability of Aggregation Procedures, Ultrafilters and Simple Games," Discussion Papers 318, Northwestern University, Center for Mathematical Studies in Economics and Management Science.

    More about this item

    Keywords

    Distributive Lattice; Linear Order; Social Choice; Coxeter Group; Maximal Chain;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stcchp:978-3-540-79128-7_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.