IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/264508.html
   My bibliography  Save this article

A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector

Author

Listed:
  • Holz, Franziska
  • Scherwath, Tim
  • Crespo del Granado, Pedro
  • Skar, Christian
  • Olmos, Luis
  • Ploussard, Quentin
  • Ramos, Andrés
  • Herbst, Andrea

Abstract

Carbon Capture and Storage (CCS) might be a central technology to reach the decarbonisation goals of the European energy system. However, CCS deployment faces multiple economic, technological, and infrastructure challenges. Related literature tends to only focus on certain aspects of the CCS technology or to be limited to a particular sector perspective. In contrast, this paper presents a holistic modelling framework to analyse the long-term perspectives of CCS in Europe by extending the typical analysis from the electricity sector to the industry sector, and by including the CO2 infrastructure level with CO2 pipelines and storage. To this end, we use state-of-the-art models of the electricity sector (generation investment and electricity grid models), the industry sector, as well as the CO2 infrastructure sector. This unique modelling framework analyses the feasibility and costs of CCS deployment in the European Union towards 2050 in three scenarios with the same ambitious climate policy target (~85% CO2 emissions reduction). The main insights on the deployment of CCS in Europe hinges on two factors: i) the development of low-cost power generation technologies with carbon capture (coal and/or gas-fired), and ii) a sufficiently high CO2 price to compensate for the costs of deploying the CO2 transport infrastructure. Once CO2 transport infrastructure is available, CCS will be a preferred mitigation option for the industry sector emissions. The joint use of CO2 infrastructure by the electricity and the industry sector allows for economies of scale and economies of density. In the long term, CCS cannot achieve the 100% decarbonisation target of the energy sector because the technology can only capture 80–90% of the CO2 emissions of thermal power plants. Moreover, the advantages of CCS in terms of energy system costs compared to a system without CCS is rather small, in the range of 2%. It crucially depends on the costs of renewables and the costs of their integration in the electricity grid.

Suggested Citation

  • Holz, Franziska & Scherwath, Tim & Crespo del Granado, Pedro & Skar, Christian & Olmos, Luis & Ploussard, Quentin & Ramos, Andrés & Herbst, Andrea, 2021. "A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104, pages 1-18.
  • Handle: RePEc:zbw:espost:264508
    DOI: 10.1016/j.eneco.2021.105631
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/264508/1/1-s2.0-S0140988321004941-main.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.eneco.2021.105631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    2. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    3. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Pao-Yu Oei and Roman Mendelevitch, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    5. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    6. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness," Energy, Elsevier, vol. 52(C), pages 27-36.
    7. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    8. Pudjianto, D. & Castro, M. & Strbac, G. & Liu, Z. & van der Sluis, L. & Papaefthymiou, G., 2016. "Asymmetric impacts of European transmission network development towards 2050: Stakeholder assessment based on IRENE-40 scenarios," Energy Economics, Elsevier, vol. 53(C), pages 261-269.
    9. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    10. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    11. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    12. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    13. Barbara Koelbl & Machteld Broek & André Faaij & Detlef Vuuren, 2014. "Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise," Climatic Change, Springer, vol. 123(3), pages 461-476, April.
    14. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    15. Eide, Jan & de Sisternes, Fernando J. & Herzog, Howard J. & Webster, Mort D., 2014. "CO2 emission standards and investment in carbon capture," Energy Economics, Elsevier, vol. 45(C), pages 53-65.
    16. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    17. Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Long-run power storage requirements for high shares of renewables: Results and sensitivities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 156-171.
    18. Herzog, Howard J., 2011. "Scaling up carbon dioxide capture and storage: From megatons to gigatons," Energy Economics, Elsevier, vol. 33(4), pages 597-604, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    2. Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
    3. Chyong, Chi Kong & Reiner, David M. & Ly, Rebecca & Fajardy, Mathilde, 2023. "Economic modelling of flexible carbon capture and storage in a decarbonised electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Zhang, Bin & Niu, Niu & Li, Hao & Wang, Zhaohua, 2023. "Assessing the efforts of coal phaseout for carbon neutrality in China," Applied Energy, Elsevier, vol. 352(C).
    5. Nestor Shpak & Solomiya Ohinok & Ihor Kulyniak & Włodzimierz Sroka & Yuriy Fedun & Romualdas Ginevičius & Joanna Cygler, 2022. "CO 2 Emissions and Macroeconomic Indicators: Analysis of the Most Polluted Regions in the World," Energies, MDPI, vol. 15(8), pages 1-22, April.
    6. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    7. Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).
    8. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    9. Adrien Nicolle & Diego Cedreros & Olivier Massol & Emma Jagu Schippers, 2023. "Modeling CO2 Pipeline Systems : An Analytical Lens for CCS Regulation," Working Papers hal-04087681, HAL.
    10. Wetzel, Manuel & Gils, Hans Christian & Bertsch, Valentin, 2023. "Green energy carriers and energy sovereignty in a climate neutral European energy system," Renewable Energy, Elsevier, vol. 210(C), pages 591-603.
    11. Gawlick, Julia & Hamacher, Thomas, 2023. "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050," Energy Policy, Elsevier, vol. 180(C).
    12. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    2. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    3. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    4. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    5. Adrien Nicolle & Diego Cedreros & Olivier Massol & Emma Jagu Schippers, 2023. "Modeling CO2 Pipeline Systems : An Analytical Lens for CCS Regulation," Working Papers hal-04087681, HAL.
    6. Rolf Golombek & Mads Greaker & Snorre Kverndokk & Lin Ma, 2021. "The Transition to Carbon Capture and Storage Technologies," CESifo Working Paper Series 9047, CESifo.
    7. Rolf Golombek & Mads Greaker & Snorre Kverndokk & Lin Ma, 2023. "Policies to Promote Carbon Capture and Storage Technologies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 267-302, May.
    8. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    10. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    11. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    12. Hang Deng & Jeffrey M. Bielicki & Michael Oppenheimer & Jeffrey P. Fitts & Catherine A. Peters, 2017. "Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation," Climatic Change, Springer, vol. 144(2), pages 151-163, September.
    13. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 259-279.
    14. Lee, Hwarang & Lee, Jeongeun & Koo, Yoonmo, 2022. "Economic impacts of carbon capture and storage on the steel industry–A hybrid energy system model incorporating technological change," Applied Energy, Elsevier, vol. 317(C).
    15. Olivier Massol & Stéphane Tchung-Ming, 2012. "Joining the CCS Club ! Insights from a Northwest European CO2 pipeline project," Working Papers hal-03206457, HAL.
    16. Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
    17. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    18. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    19. Ansari, Dawud & Holz, Franziska, 2019. "Anticipating global energy, climate and policy in 2055: Constructing qualitative and quantitative narratives," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 58, pages 1-23.
    20. Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:264508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.