IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v32y2017i6p1069-1086.html
   My bibliography  Save this article

Structural FECM: Cointegration in large‐scale structural FAVAR models

Author

Listed:
  • Anindya Banerjee
  • Massimiliano Marcellino
  • Igor Masten

Abstract

Starting from the dynamic factor model for non-stationary data we derive the factor-augmented error correction model (FECM) and, by generalizing the Granger representation theorem, its moving-average representation. The latter is used for the identification of structural shocks and their propagation mechanism. Besides discussing contemporaneous restrictions along the lines of Bernanke et al. (2005), we show how to implement classical identification schemes based on long-run restrictions in the case of large panels. The importance of the error-correction mechanism for impulse response analysis is analysed by means of both empirical examples and simulation experiments. Our results show that the bias in estimated impulse responses in a FAVAR model is positively related to the strength of the error-correction mechanism and the cross-section dimension of the panel. We observe empirically in a large panel of US data that these features have a substantial effect on the responses of several variables to the identified real shock.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2017. "Structural FECM: Cointegration in large‐scale structural FAVAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1069-1086, September.
  • Handle: RePEc:wly:japmet:v:32:y:2017:i:6:p:1069-1086
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Gengenbach, C. & Urbain, J.R.Y.J. & Westerlund, J., 2008. "Panel error correction testing with global stochastic trends," Research Memorandum 051, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    3. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    4. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    5. Warne, A., 1993. "A Common Trends Model: Identification, Estimation and Inference," Papers 555, Stockholm - International Economic Studies.
    6. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    7. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    8. Sandra Eickmeier, 2009. "Comovements and heterogeneity in the euro area analyzed in a non-stationary dynamic factor model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 933-959.
    9. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    10. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Carlo A. Favero & Alessandro Melone, 2019. "Asset Pricing vs Asset Expected Returning in Factor Models," Working Papers 651, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Onatski, Alexei & Wang, Chen, 2019. "Extreme canonical correlations and high-dimensional cointegration analysis," Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.
    4. Stoupos, Nikolaos & Nikas, Christos & Kiohos, Apostolos, 2023. "Turkey: From a thriving economic past towards a rugged future? - An empirical analysis on the Turkish financial markets," Emerging Markets Review, Elsevier, vol. 54(C).
    5. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    6. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    7. Kurz-Kim, Jeong-Ryeol, 2018. "A note on the predictive power of survey data in nowcasting euro area GDP," Discussion Papers 10/2018, Deutsche Bundesbank.
    8. Favero, Carlo A. & Melone, Alessandro, 2020. "Asset Pricing vs Asset Expected Returning in Factor-Portfolio Models," CEPR Discussion Papers 14417, C.E.P.R. Discussion Papers.
    9. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2020. "Cointegration and Error Correction Mechanisms for Singular Stochastic Vectors," Econometrics, MDPI, vol. 8(1), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2016. "An Overview of the Factor-augmented Error-Correction Model," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 3-41, Emerald Group Publishing Limited.
    2. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    3. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    4. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    5. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    6. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    7. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    8. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    9. Eickmeier, Sandra, 2005. "Common stationary and non-stationary factors in the euro area analyzed in a large-scale factor model," Discussion Paper Series 1: Economic Studies 2005,02, Deutsche Bundesbank.
    10. Jushan Bai & Josep Lluís Carrion‐i‐Silvestre, 2013. "Testing panel cointegration with unobservable dynamic common factors that are correlated with the regressors," Econometrics Journal, Royal Economic Society, vol. 16(2), pages 222-249, June.
    11. Cristina Conflitti and Matteo Luciani, 2019. "Oil Price Pass-through into Core Inflation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    12. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
    13. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    14. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    15. Selien De Schryder & Gert Peersman, 2016. "The U.S. Dollar Exchange Rate and the Demand for Oil," The Energy Journal, , vol. 37(1), pages 90-114, January.
    16. Christian Dreger & Dierk Herzer, 2013. "A further examination of the export-led growth hypothesis," Empirical Economics, Springer, vol. 45(1), pages 39-60, August.
    17. HORIE, Tetsushi & 堀江, 哲史 & YAMAMOTO, Yohei & 山本, 庸平, 2016. "Testing for Speculative Bubbles in Large-Dimensional Financial Panel Data Sets," Discussion Papers 2016-04, Graduate School of Economics, Hitotsubashi University.
    18. Hallin, Marc & Lippi, Marco, 2013. "Factor models in high-dimensional time series—A time-domain approach," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2678-2695.
    19. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    20. Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Papers 1806.03647, arXiv.org.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:32:y:2017:i:6:p:1069-1086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.