IDEAS home Printed from https://ideas.repec.org/a/the/publsh/3273.html
   My bibliography  Save this article

Locally Bayesian learning in networks

Author

Listed:
  • Li, Wei

    (Department of Economics, University of British Columbia)

  • Tan, Xu

    (Department of Economics, University of Washington)

Abstract

Agents in a network want to learn the true state of the world from their own signals and their neighbors' reports. Agents know only their local networks, consisting of their neighbors and the links among them. Every agent is Bayesian with the (possibly misspecified) prior belief that her local network is the entire network. We present a tractable learning rule to implement such locally Bayesian learning: each agent extracts new information using the full history of observed reports in her local network. Despite their limited network knowledge, agents learn correctly when the network is a social quilt, a tree-like union of cliques. But they fail to learn when a network contains interlinked circles (echo chambers), despite an arbitrarily large number of correct signals.

Suggested Citation

  • Li, Wei & Tan, Xu, 2020. "Locally Bayesian learning in networks," Theoretical Economics, Econometric Society, vol. 15(1), January.
  • Handle: RePEc:the:publsh:3273
    as

    Download full text from publisher

    File URL: http://econtheory.org/ojs/index.php/te/article/viewFile/20200239/26190/759
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    2. Timothy Conley & Udry Christopher, 2001. "Social Learning Through Networks: The Adoption of New Agricultural Technologies in Ghana," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 668-673.
    3. Levy, Gilat & Razin, Ronny, 2018. "Information diffusion in networks with the Bayesian Peer Influence heuristic," Games and Economic Behavior, Elsevier, vol. 109(C), pages 262-270.
    4. Bohren, J. Aislinn, 2016. "Informational herding with model misspecification," Journal of Economic Theory, Elsevier, vol. 163(C), pages 222-247.
    5. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    6. Levy, Gilat & Razin, Ronny, 2018. "Information diffusion in networks with the Bayesian Peer Influence heuristic," LSE Research Online Documents on Economics 86554, London School of Economics and Political Science, LSE Library.
    7. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    8. Duflo, Esther & Saez, Emmanuel, 2002. "Participation and investment decisions in a retirement plan: the influence of colleagues' choices," Journal of Public Economics, Elsevier, vol. 85(1), pages 121-148, July.
    9. David Miller & Nageeb Ali, 2008. "Cooperation and Collective Enforcement in Networked Societies," 2008 Meeting Papers 970, Society for Economic Dynamics.
    10. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    11. Aislinn Bohren & Daniel Hauser, 2018. "Social Learning with Model Misspeciification: A Framework and a Robustness Result," PIER Working Paper Archive 18-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Jul 2018.
    12. Matthew O. Jackson & Tomas Rodriguez-Barraquer & Xu Tan, 2012. "Social Capital and Social Quilts: Network Patterns of Favor Exchange," American Economic Review, American Economic Association, vol. 102(5), pages 1857-1897, August.
    13. Jonathan E. Alevy & Michael S. Haigh & John A. List, 2007. "Information Cascades: Evidence from a Field Experiment with Financial Market Professionals," Journal of Finance, American Finance Association, vol. 62(1), pages 151-180, February.
    14. Bogaçhan Çelen & Shachar Kariv, 2004. "Distinguishing Informational Cascades from Herd Behavior in the Laboratory," American Economic Review, American Economic Association, vol. 94(3), pages 484-498, June.
    15. Hongbin Cai & Yuyu Chen & Hanming Fang, 2009. "Observational Learning: Evidence from a Randomized Natural Field Experiment," American Economic Review, American Economic Association, vol. 99(3), pages 864-882, June.
    16. ,, 2013. "A general framework for rational learning in social networks," Theoretical Economics, Econometric Society, vol. 8(1), January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent, Thibault & Panova, Elena, 2020. "Clustering in communication networks with different-minded participants," TSE Working Papers 20-1147, Toulouse School of Economics (TSE).
    2. Rapanos, Theodoros, 2023. "What makes an opinion leader: Expertise vs popularity," Games and Economic Behavior, Elsevier, vol. 138(C), pages 355-372.
    3. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    4. Alem, Yonas & Dugoua, Eugenie, 2021. "Learning from unincentivized and incentivized communication: A randomized controlled trial in India," Ruhr Economic Papers 895, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Nathan Canen & Jacob Schwartz & Kyungchul Song, 2020. "Estimating local interactions among many agents who observe their neighbors," Quantitative Economics, Econometric Society, vol. 11(3), pages 917-956, July.
    6. Alem, Yonas & Dugoua, Eugenie, 2022. "Learning from unincentivized and incentivized communication: a randomized controlled trial in India," LSE Research Online Documents on Economics 110858, London School of Economics and Political Science, LSE Library.
    7. Jan Hązła & Ali Jadbabaie & Elchanan Mossel & M. Amin Rahimian, 2021. "Bayesian Decision Making in Groups is Hard," Operations Research, INFORMS, vol. 69(2), pages 632-654, March.
    8. Promit K. Chaudhuri & Matthew O. Jackson & Sudipta Sarangi & Hector Tzavellas, 2023. "Games Under Network Uncertainty," Papers 2305.03124, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    2. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Stability and Robustness in Misspecified Learning Models," Cowles Foundation Discussion Papers 2235, Cowles Foundation for Research in Economics, Yale University.
    3. Fishman, Arthur & Fishman, Ram & Gneezy, Uri, 2019. "A tale of two food stands: Observational learning in the field," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 101-108.
    4. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R2, Cowles Foundation for Research in Economics, Yale University, revised Dec 2021.
    5. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    6. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    7. March, Christoph & Ziegelmeyer, Anthony, 2020. "Altruistic observational learning," Journal of Economic Theory, Elsevier, vol. 190(C).
    8. Hirshleifer, David & Teoh, Siew Hong, 2008. "Thought and Behavior Contagion in Capital Markets," MPRA Paper 9142, University Library of Munich, Germany.
    9. Syngjoo Choi & Douglas Gale & Shachar Kariv, 2012. "Social learning in networks: a Quantal Response Equilibrium analysis of experimental data," Review of Economic Design, Springer;Society for Economic Design, vol. 16(2), pages 135-157, September.
    10. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Misinterpreting Others and the Fragility of Social Learning," Econometrica, Econometric Society, vol. 88(6), pages 2281-2328, November.
    11. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R3, Cowles Foundation for Research in Economics, Yale University, revised Apr 2022.
    12. Egebark, Johan & Ekström, Mathias, 2011. "Like What You Like or Like What Others Like? Conformity and Peer Effects on Facebook," Working Paper Series 886, Research Institute of Industrial Economics.
    13. Hongbin Cai & Yuyu Chen & Hanming Fang, 2009. "Observational Learning: Evidence from a Randomized Natural Field Experiment," American Economic Review, American Economic Association, vol. 99(3), pages 864-882, June.
    14. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    15. Engström, Per & Forsell, Eskil, 2018. "Demand effects of consumers’ stated and revealed preferences," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 43-61.
    16. Germano, Fabrizio & Sobbrio, Francesco, 2020. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Journal of Public Economics, Elsevier, vol. 187(C).
    17. Stephanie De Mel & Kaivan Munshi & Soenje Reiche & Hamid Sabourian, 2021. "Herding with Heterogeneous Ability: An Application to Organ Transplantation," Cowles Foundation Discussion Papers 2308, Cowles Foundation for Research in Economics, Yale University.
    18. Vivi Alatas & Abhijit Banerjee & Arun G. Chandrasekhar & Rema Hanna & Benjamin A. Olken, 2016. "Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia," American Economic Review, American Economic Association, vol. 106(7), pages 1663-1704, July.
    19. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," PSE Working Papers halshs-03735680, HAL.
    20. Anna K. Edenbrandt & Christian Gamborg & Bo Jellesmark Thorsen, 2020. "Observational learning in food choices: The effect of product familiarity and closeness of peers," Agribusiness, John Wiley & Sons, Ltd., vol. 36(3), pages 482-498, June.

    More about this item

    Keywords

    Locally Bayesian learning; rational learning with misspecified priors; efficient learning in finite networks;
    All these keywords.

    JEL classification:

    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:the:publsh:3273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin J. Osborne (email available below). General contact details of provider: http://econtheory.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.