IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v37y2018i3p260-280.html
   My bibliography  Save this article

A Laplace stochastic frontier model

Author

Listed:
  • William C. Horrace
  • Christopher F. Parmeter

Abstract

We propose a Laplace stochastic frontier model as an alternative to the traditional model with normal errors. An interesting feature of the Laplace model is that the distribution of inefficiency conditional on the composed error is constant for positive values of the composed error, but varies for negative values. A simulation study suggests that the model performs well relative to the normal-exponential model when the two-sided error is misspecified. An application to U.S. Airlines is provided.

Suggested Citation

  • William C. Horrace & Christopher F. Parmeter, 2018. "A Laplace stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 260-280, March.
  • Handle: RePEc:taf:emetrv:v:37:y:2018:i:3:p:260-280
    DOI: 10.1080/07474938.2015.1059715
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2015.1059715
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2015.1059715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. William Horrace & Seth Richards-Shubik & Ian Wright, 2015. "Expected efficiency ranks from parametric stochastic frontier models," Empirical Economics, Springer, vol. 48(2), pages 829-848, March.
    2. Magnus, J.R. & Powell, O.R. & Prüfer, P., 2008. "A Comparison of Two Averaging Techniques with an Application to Growth Empirics," Other publications TiSEM 0392dffa-51e0-4bc9-9644-f, Tilburg University, School of Economics and Management.
    3. William C. Horrace & Peter Schmidt, 2000. "Multiple comparisons with the best, with economic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-26.
    4. Horrace, William C., 2005. "On ranking and selection from independent truncated normal distributions," Journal of Econometrics, Elsevier, vol. 126(2), pages 335-354, June.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    6. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    7. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    8. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    9. Qu Feng & William C. Horrace, 2012. "Alternative technical efficiency measures: Skew, bias and scale," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 253-268, March.
    10. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    11. Efthymios G. Tsionas, 2007. "Efficiency Measurement with the Weibull Stochastic Frontier," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(5), pages 693-706, October.
    12. Kim, Yangseon & Schmidt, Peter, 2008. "Marginal Comparisons With the Best and the Efficiency Measurement Problem," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 253-260, April.
    13. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    14. Carree, Martin A., 2002. "Technological inefficiency and the skewness of the error component in stochastic frontier analysis," Economics Letters, Elsevier, vol. 77(1), pages 101-107, September.
    15. Robin C. Sickles & William C. Horrace (ed.), 2014. "Festschrift in Honor of Peter Schmidt," Springer Books, Springer, edition 127, number 978-1-4899-8008-3, January.
    16. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    17. Waldman, Donald M., 1982. "A stationary point for the stochastic frontier likelihood," Journal of Econometrics, Elsevier, vol. 18(2), pages 275-279, February.
    18. Green, Alison & Mayes, David, 1991. "Technical Inefficiency in Manufacturing Industries," Economic Journal, Royal Economic Society, vol. 101(406), pages 523-538, May.
    19. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    20. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    21. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    22. Alfonso Flores-Lagunes & William C. Horrace & Kurt E. Schnier, 2007. "Identifying technically efficient fishing vessels: a non-empty, minimal subset approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 729-745.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Badunenko & Daniel J. Henderson, 2024. "Production analysis with asymmetric noise," Journal of Productivity Analysis, Springer, vol. 61(1), pages 1-18, February.
    2. William C. Horrace & Hyunseok Jung & Yi Yang, 2023. "The conditional mode in parametric frontier models," Journal of Productivity Analysis, Springer, vol. 60(3), pages 333-343, December.
    3. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.
    4. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    5. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    6. Horrace, William C. & Rothbart, Michah W. & Yang, Yi, 2022. "Technical efficiency of public middle schools in New York City," Economics of Education Review, Elsevier, vol. 86(C).
    7. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    8. Tsionas, Mike G. & Assaf, A. George & Andrikopoulos, Athanasios, 2020. "Quantile stochastic frontier models with endogeneity," Economics Letters, Elsevier, vol. 188(C).
    9. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    10. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    11. Juan Cabas Monje & Bouali Guesmi & Amer Ait Sidhoum & José María Gil, 2023. "Measuring technical efficiency of Spanish pig farming: Quantile stochastic frontier approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 688-703, October.
    12. Christopher F. Parmeter & Shirong Zhao, 2023. "An alternative corrected ordinary least squares estimator for the stochastic frontier model," Empirical Economics, Springer, vol. 64(6), pages 2831-2857, June.
    13. Cheol-Keun Cho & Peter Schmidt, 2020. "The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables," Empirical Economics, Springer, vol. 58(5), pages 2031-2047, May.
    14. Graziella Bonanno & Filippo Domma, 2022. "Analytical Derivations of New Specifications for Stochastic Frontiers with Applications," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    15. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    16. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    17. Alecos Papadopoulos, 2023. "The noise error component in stochastic frontier analysis," Empirical Economics, Springer, vol. 64(6), pages 2795-2829, June.
    18. Zhao, Shirong & Parmeter, Christopher F., 2022. "The “wrong skewness” problem: Moment constrained maximum likelihood estimation of the stochastic frontier model," Economics Letters, Elsevier, vol. 221(C).
    19. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    20. E. Fusco & R. Benedetti & F. Vidoli, 2023. "Stochastic frontier estimation through parametric modelling of quantile regression coefficients," Empirical Economics, Springer, vol. 64(2), pages 869-896, February.
    21. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.
    22. Stead, Alexander D. & Wheat, Phill & Greene, William H., 2023. "Robust maximum likelihood estimation of stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 309(1), pages 188-201.
    23. Papadopoulos, Alecos & Parmeter, Christopher F., 2023. "A specification test for the composed error term in the stochastic frontier model," Economics Letters, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Horrace & Seth Richards-Shubik & Ian Wright, 2015. "Expected efficiency ranks from parametric stochastic frontier models," Empirical Economics, Springer, vol. 48(2), pages 829-848, March.
    2. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    3. William C. Horrace & Ian A. Wright, 2020. "Stationary Points for Parametric Stochastic Frontier Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 516-526, July.
    4. William C. Horrace & Hyunseok Jung & Yi Yang, 2023. "The conditional mode in parametric frontier models," Journal of Productivity Analysis, Springer, vol. 60(3), pages 333-343, December.
    5. Phill Wheat & William Greene & Andrew Smith, 2014. "Understanding prediction intervals for firm specific inefficiency scores from parametric stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 55-65, August.
    6. William Horrace & Seth Richards-Shubik, 2012. "A Monte Carlo study of ranked efficiency estimates from frontier models," Journal of Productivity Analysis, Springer, vol. 38(2), pages 155-165, October.
    7. William C. Horrace & Seth O. Richards, 2007. "A Monte Carlo Study of Efficiency Estimates from Frontier Models," Center for Policy Research Working Papers 97, Center for Policy Research, Maxwell School, Syracuse University.
    8. Jun Cai & Qu Feng & William C. Horrace & Guiying Laura Wu, 2021. "Wrong skewness and finite sample correction in the normal-half normal stochastic frontier model," Empirical Economics, Springer, vol. 60(6), pages 2837-2866, June.
    9. Adugna Lemi & Ian Wright, 2020. "Exports, foreign ownership, and firm-level efficiency in Ethiopia and Kenya: an application of the stochastic frontier model," Empirical Economics, Springer, vol. 58(2), pages 669-698, February.
    10. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    11. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    12. Horrace, William C. & Rothbart, Michah W. & Yang, Yi, 2022. "Technical efficiency of public middle schools in New York City," Economics of Education Review, Elsevier, vol. 86(C).
    13. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    14. Horrace, William C., 2005. "On ranking and selection from independent truncated normal distributions," Journal of Econometrics, Elsevier, vol. 126(2), pages 335-354, June.
    15. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    16. William C. Horrace & Peter Schmidt, 2002. "Confidence Statements for Efficiency Estimates from Stochastic Frontier Models," Econometrics 0206006, University Library of Munich, Germany.
    17. Bos, J.W.B. & Schmiedel, H., 2007. "Is there a single frontier in a single European banking market?," Journal of Banking & Finance, Elsevier, vol. 31(7), pages 2081-2102, July.
    18. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    19. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.
    20. Ronald Felthoven & William Horrace & Kurt Schnier, 2009. "Estimating heterogeneous capacity and capacity utilization in a multi-species fishery," Journal of Productivity Analysis, Springer, vol. 32(3), pages 173-189, December.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:37:y:2018:i:3:p:260-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.