IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v21y2016i2p135-151.html
   My bibliography  Save this article

Linking the emissions trading schemes of Europe and China - Combining climate and energy policy instruments

Author

Listed:
  • Yang Liu
  • Taoyuan Wei

Abstract

Both Europe and China have announced targets for greenhouse gas emissions reduction and renewable energy development. To achieve their emissions targets, Europe has introduced emissions trading scheme (ETS) since 2005 and China has planned to establish a national ETS in 2015. We assess the impact of a joint Europe-China ETS when both climate and energy policy instruments are simulated in a multiregional general equilibrium model. Our results show that a joint ETS markedly increases total carbon emissions from fossil fuels even though global mitigation costs are reduced. Moreover, a joint ETS helps China achieve its renewable energy target, but for Europe, it works opposite. While the renewable energy target does not help Europe achieve additional abatement, the renewable energy target in China reduces mitigation costs and emissions, and increases renewable energy consumption and sales of carbon allowances. Financial transfer through a joint ETS remains marginal compared to China’s demand for renewable energy subsidies. We conclude that as long as an absolute emissions cap is missing in China, a joint ETS is not attractive for mitigation and China’s renewable energy target can reduce emissions. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Yang Liu & Taoyuan Wei, 2016. "Linking the emissions trading schemes of Europe and China - Combining climate and energy policy instruments," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(2), pages 135-151, February.
  • Handle: RePEc:spr:masfgc:v:21:y:2016:i:2:p:135-151
    DOI: 10.1007/s11027-014-9580-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-014-9580-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-014-9580-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Ranson & Robert N. Stavins, 2016. "Linkage of greenhouse gas emissions trading systems: learning from experience," Climate Policy, Taylor & Francis Journals, vol. 16(3), pages 284-300, April.
    2. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    3. Solveig Glomsrød & Taoyuan Wei & Torben Mideksa & Bjørn Samset, 2015. "Energy market impacts of nuclear power phase-out policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1511-1527, December.
    4. Eskeland, Gunnar S. & Rive, Nathan A. & Mideksa, Torben K., 2012. "Europe’s climate goals and the electricity sector," Energy Policy, Elsevier, vol. 41(C), pages 200-211.
    5. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    6. Solveig Glomsrød & Taoyuan Wei & Knut Alfsen, 2013. "Pledges for climate mitigation: the effects of the Copenhagen accord on CO 2 emissions and mitigation costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 619-636, June.
    7. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    8. Christoph Böhringer & Knut Rosendahl, 2010. "Green promotes the dirtiest: on the interaction between black and green quotas in energy markets," Journal of Regulatory Economics, Springer, vol. 37(3), pages 316-325, June.
    9. Zhang, Da & Karplus, Valerie J. & Cassisa, Cyril & Zhang, Xiliang, 2014. "Emissions trading in China: Progress and prospects," Energy Policy, Elsevier, vol. 75(C), pages 9-16.
    10. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    11. Capros, Pantelis & Mantzos, Leonidas & Parousos, Leonidas & Tasios, Nikolaos & Klaassen, Ger & Van Ierland, Tom, 2011. "Analysis of the EU policy package on climate change and renewables," Energy Policy, Elsevier, vol. 39(3), pages 1476-1485, March.
    12. Rypdal, Kristin & Rive, Nathan & Astrom, Stefan & Karvosenoja, Niko & Aunan, Kristin & Bak, Jesper L. & Kupiainen, Kaarle & Kukkonen, Jaakko, 2007. "Nordic air quality co-benefits from European post-2012 climate policies," Energy Policy, Elsevier, vol. 35(12), pages 6309-6322, December.
    13. Thure Traber & Claudia Kemfert, 2009. "Impacts of the German Support for Renewable Energy on Electricity Prices, Emissions, and Firms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 155-178.
    14. A. Denny Ellerman & Ian Sue Wing, 2003. "Absolute versus intensity-based emission caps," Climate Policy, Taylor & Francis Journals, vol. 3(sup2), pages 7-20, December.
    15. Shuwei Zhang & Nico Bauer, 2013. "Utilization of the non-fossil fuel target and its implications in China," Climate Policy, Taylor & Francis Journals, vol. 13(3), pages 328-344, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    2. Li, Mengyu & Weng, Yuyan & Duan, Maosheng, 2019. "Emissions, energy and economic impacts of linking China’s national ETS with the EU ETS," Applied Energy, Elsevier, vol. 235(C), pages 1235-1244.
    3. Xia, Yan & Tang, Zhipeng, 2017. "The impacts of emissions accounting methods on an imperfect competitive carbon trading market," Energy, Elsevier, vol. 119(C), pages 67-76.
    4. Wei, Taoyuan & Zhu, Qin & Glomsrød, Solveig, 2018. "How Will Demographic Characteristics of the Labor Force Matter for the Global Economy and Carbon Dioxide Emissions?," Ecological Economics, Elsevier, vol. 147(C), pages 197-207.
    5. Weidong Chen & Yujie Bi, 2018. "Electricity price subsidy or carbon-trading subsidy: which is more efficient to develop photovoltaic power generation from a government perspective?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 667-683, June.
    6. Winkler, Malte Björn Johannes & Peterson, Sonja & Thube, Sneha, 2021. "Gains associated with linking the EU and Chinese ETS under different assumptions on restrictions, allowance endowments, and international trade," Energy Economics, Elsevier, vol. 104(C).
    7. Chang, Kai & Pei, Ping & Zhang, Chao & Wu, Xin, 2017. "Exploring the price dynamics of CO2 emissions allowances in China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 67(C), pages 213-223.
    8. Li, Mengyu & Duan, Maosheng, 2021. "Exploring linkage opportunities for China's emissions trading system under the Paris targets——EU-China and Japan-Korea-China cases," Energy Economics, Elsevier, vol. 102(C).
    9. Zhang, Xu & Qi, Tian-yu & Ou, Xun-min & Zhang, Xi-liang, 2017. "The role of multi-region integrated emissions trading scheme: A computable general equilibrium analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1860-1868.
    10. Wei, Taoyuan & Liu, Yang, 2017. "Estimation of global rebound effect caused by energy efficiency improvement," Energy Economics, Elsevier, vol. 66(C), pages 27-34.
    11. Qianqian Guo & Zhifang Su & Chaoshin Chiao, 2022. "Carbon emissions trading policy, carbon finance, and carbon emissions reduction: evidence from a quasi-natural experiment in China," Economic Change and Restructuring, Springer, vol. 55(3), pages 1445-1480, August.
    12. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Ru Li & Sigit Perdana & Marc Vielle, 2021. "Potential integration of Chinese and European emissions trading market: welfare distribution analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(5), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    2. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61.
    3. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    4. Thomas P. Tangerås, 2015. "Renewable Electricity Policy and Market Integration," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    5. Mengfei Jiang & Xi Liang & David Reiner & Boqiang Lin & Maosheng Duan, 2018. "Stakeholder Views on Interactions between Low-carbon Policies and Carbon Markets in China: Lessons from the Guangdong ETS," Working Papers EPRG 1805, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Federico Boffa, Stefano Clò, and Alessio D'Amato, 2016. "Investment in Renewables under Uncertainty: Fitting a Feed-in Scheme into ETS," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    7. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    8. Corradini, Massimiliano & Costantini, Valeria & Markandya, Anil & Paglialunga, Elena & Sforna, Giorgia, 2018. "A dynamic assessment of instrument interaction and timing alternatives in the EU low-carbon policy mix design," Energy Policy, Elsevier, vol. 120(C), pages 73-84.
    9. Aune, Finn Roar & Dalen, Hanne Marit & Hagem, Cathrine, 2012. "Implementing the EU renewable target through green certificate markets," Energy Economics, Elsevier, vol. 34(4), pages 992-1000.
    10. Fridolfsson, Sven-Olof & Tangerås, Thomas P., 2013. "A reexamination of renewable electricity policy in Sweden," Energy Policy, Elsevier, vol. 58(C), pages 57-63.
    11. Carlén, Björn & Hernández, Aday, 2013. "Indexing European carbon taxes to the EU ETS Permit Price: a good idea?," Working papers in Transport Economics 2013:33, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    12. Christoph Böhringer, Florian Landis, and Miguel Angel Tovar Reaños, 2017. "Economic Impacts of Renewable Energy Production in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    13. Tao Pang & Maosheng Duan, 2016. "Cap setting and allowance allocation in China's emissions trading pilot programmes: special issues and innovative solutions," Climate Policy, Taylor & Francis Journals, vol. 16(7), pages 815-835, October.
    14. Gawel, Erik & Strunz, Sebastian & Lehmann, Paul, 2014. "A public choice view on the climate and energy policy mix in the EU — How do the emissions trading scheme and support for renewable energies interact?," Energy Policy, Elsevier, vol. 64(C), pages 175-182.
    15. Munnings, Clayton & Morgenstern, Richard D. & Wang, Zhongmin & Liu, Xu, 2016. "Assessing the design of three carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 96(C), pages 688-699.
    16. Christoph Böhringer & Florian Landis & Miguel Angel Tovar Reaños, 2016. "Cost-effectiveness and Incidence of Renewable Energy Promotion in Germany," Working Papers V-390-16, University of Oldenburg, Department of Economics, revised Jul 2016.
    17. Munnings, Clayton & Morgenstern, Richard & Wang, Zhongmin & Liu, Xu, 2014. "Assessing the Design of Three Pilot Programs for Carbon Trading in China," RFF Working Paper Series dp-14-36, Resources for the Future.
    18. Fabio Zagonari, 2018. "Coherence, Causality, and Effectiveness of the EU Environmental Policy System: Results of Complementary Statistical and Econometric Analyses," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 1-29, May.
    19. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    20. Hao, Peng & Guo, Jun-Peng & Chen, Yihsu & Xie, Bai-Chen, 2020. "Does a combined strategy outperform independent policies? Impact of incentive policies on renewable power generation," Omega, Elsevier, vol. 97(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:21:y:2016:i:2:p:135-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.