IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v28y2003i3p581-598.html
   My bibliography  Save this article

Estimating a mixture of stochastic frontier regression models via the em algorithm: A multiproduct cost function application

Author

Listed:
  • Steven B. Caudill

Abstract

Researchers have become increasingly interested in estimating mixtures of stochastic frontiers. Mester (1993), Caudill (1993), and Polachek and Yoon (1987), for example, estimate stochastic frontier models for different regimes, assuming sample separation information is given. Building on earlier work by Lee and Porter (1984), Douglas, Conway, and Ferrier (1995) estimate a stochastic frontier switching regression model in the presence of noisy sample separation information. The purpose of this paper is to extend earlier work by estimating a mixture of stochastic frontiers assuming no sample separation information. This case is more likely to occur in practice than even noisy sample separation information. In order to estimate a mixture of stochastic frontiers with no sample separation information, an EM algorithm to obtain maximum likelihood estimates is developed. The algorithm is used to estimate a mixture of stochastic (cost) frontiers using data on U.S. savings and loans for the years 1986, 1987, and 1988. Statistical evidence is found supporting the existence of a mixture of stochastic frontiers. Copyright Springer-Verlag Berlin Heidelberg 2003

Suggested Citation

  • Steven B. Caudill, 2003. "Estimating a mixture of stochastic frontier regression models via the em algorithm: A multiproduct cost function application," Empirical Economics, Springer, vol. 28(3), pages 581-598, July.
  • Handle: RePEc:spr:empeco:v:28:y:2003:i:3:p:581-598
    DOI: 10.1007/s001810200147
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001810200147
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001810200147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas Lichard & Jan Hanousek & Randall K. Filer, 2012. "Measuring the Shadow Economy: Endogenous Switching Regression with Unobserved Separation," Economics Working Paper Archive at Hunter College 438, Hunter College Department of Economics.
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Johnes, Geraint & Johnes, Jill, 2009. "Higher education institutions' costs and efficiency: Taking the decomposition a further step," Economics of Education Review, Elsevier, vol. 28(1), pages 107-113, February.
    4. Tran, Kien C. & Tsionas, Mike G., 2016. "Zero-inefficiency stochastic frontier models with varying mixing proportion: A semiparametric approach," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1113-1123.
    5. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    6. Nieswand, Maria & Seifert, Stefan, 2018. "Environmental factors in frontier estimation – A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 133-148.

    More about this item

    Keywords

    Key words: Mixture model; Stochastic frontier; efficiency; JEL: C24; C81; D24;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:28:y:2003:i:3:p:581-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.