IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v4y2022i4d10.1007_s42521-022-00057-7.html
   My bibliography  Save this article

Predicting interest rate distributions using PCA & quantile regression

Author

Listed:
  • Rita Pimentel

    (Norwegian University of Science and Technology (NTNU))

  • Morten Risstad

    (Norwegian University of Science and Technology (NTNU)
    Sparebank 1 Markets)

  • Sjur Westgaard

    (Norwegian University of Science and Technology (NTNU))

Abstract

Principal component analysis (PCA) is well established as a powerful statistical technique in the realm of yield curve modeling. PCA based term structure models typically provide accurate fit to observed yields and explain most of the cross-sectional variation of yields. Although principal components are building blocks of modern term structure models, the approach has been less explored for the purpose of risk modelling—such as Value-at-Risk and Expected Shortfall. Interest rate risk models are generally challenging to specify and estimate, due to the regime switching behavior of yields and yield volatilities. In this paper, we contribute to the literature by combining estimates of conditional principal component volatilities in a quantile regression (QREG) framework to infer distributional yield estimates. The proposed PCA-QREG model offers predictions that are of high accuracy for most maturities while retaining simplicity in application and interpretability.

Suggested Citation

  • Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
  • Handle: RePEc:spr:digfin:v:4:y:2022:i:4:d:10.1007_s42521-022-00057-7
    DOI: 10.1007/s42521-022-00057-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-022-00057-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-022-00057-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Hossein Hassani & Mohammad Reza Yeganegi & Juncal Cuñado & Rangan Gupta, 2020. "Forecasting interest rate volatility of the United Kingdom: evidence from over 150 years of data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1128-1143, April.
    4. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    5. Scott Joslin & Kenneth J. Singleton & Haoxiang Zhu, 2011. "A New Perspective on Gaussian Dynamic Term Structure Models," The Review of Financial Studies, Society for Financial Studies, vol. 24(3), pages 926-970.
    6. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2016. "Why Invest in Emerging Markets? The Role of Conditional Return Asymmetry," Journal of Finance, American Finance Association, vol. 71(5), pages 2145-2192, October.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2013. "Pricing the term structure with linear regressions," Journal of Financial Economics, Elsevier, vol. 110(1), pages 110-138.
    10. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    11. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    12. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    13. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    14. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    15. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    16. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Michael D. Bauer & Glenn D. Rudebusch, 2016. "Monetary Policy Expectations at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(7), pages 1439-1465, October.
    19. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    20. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    21. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    22. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    23. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    24. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    25. Ravi Bansal & Hao Zhou, 2002. "Term Structure of Interest Rates with Regime Shifts," Journal of Finance, American Finance Association, vol. 57(5), pages 1997-2043, October.
    26. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    27. Hamilton, James D. & Wu, Jing Cynthia, 2012. "Identification and estimation of Gaussian affine term structure models," Journal of Econometrics, Elsevier, vol. 168(2), pages 315-331.
    28. Qiang Dai & Kenneth J. Singleton & Wei Yang, 2007. "Regime Shifts in a Dynamic Term Structure Model of U.S. Treasury Bond Yields," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1669-1706, 2007 12.
    29. Michael D. Bauer & James D. Hamilton, 2018. "Robust Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 399-448.
    30. Stanton, Richard, 1997. "A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
    31. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    32. Johan Hagenbjörk & Jörgen Blomvall, 2019. "Simulation and evaluation of the distribution of interest rate risk," Computational Management Science, Springer, vol. 16(1), pages 297-327, February.
    33. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    34. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    35. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    36. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    37. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    38. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    39. Jotikasthira, Chotibhak & Le, Anh & Lundblad, Christian, 2015. "Why do term structures in different currencies co-move?," Journal of Financial Economics, Elsevier, vol. 115(1), pages 58-83.
    40. Nick Deguillaume & Riccardo Rebonato & Andrey Pogudin, 2013. "The nature of the dependence of the magnitude of rate moves on the rates levels: a universal relationship," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 351-367, February.
    41. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    42. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    43. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    44. Haugom, Erik & Ray, Rina & Ullrich, Carl J. & Veka, Steinar & Westgaard, Sjur, 2016. "A parsimonious quantile regression model to forecast day-ahead value-at-risk," Finance Research Letters, Elsevier, vol. 16(C), pages 196-207.
    45. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    46. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    47. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    48. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    49. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    50. Rebonato,Riccardo, 2018. "Bond Pricing and Yield Curve Modeling," Cambridge Books, Cambridge University Press, number 9781107165854, November.
    51. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    52. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    53. Eliana Christou & Michael Grabchak, 2019. "Estimation of value-at-risk using single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(13), pages 2418-2433, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    2. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. repec:wyi:journl:002109 is not listed on IDEAS
    4. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    5. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    6. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    7. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.
    8. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    9. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    10. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    11. Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Hansen, Anne Lundgaard, 2021. "Modeling persistent interest rates with double-autoregressive processes," Journal of Banking & Finance, Elsevier, vol. 133(C).
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    15. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    16. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.
    17. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
    18. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    19. Goliński, Adam & Zaffaroni, Paolo, 2016. "Long memory affine term structure models," Journal of Econometrics, Elsevier, vol. 191(1), pages 33-56.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    21. Constantino Hevia & Martín Sola & Ivan Petrella, 2022. "Bond risk premia, priced regime shifts, and macroeconomic fundamentals," Department of Economics Working Papers 2022_03, Universidad Torcuato Di Tella.

    More about this item

    Keywords

    Interest rate distributions; Risk management; Principal component analysis; Quantile regression;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:4:y:2022:i:4:d:10.1007_s42521-022-00057-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.