IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v67y2015i2p375-409.html
   My bibliography  Save this article

Quantile regression and variable selection of partial linear single-index model

Author

Listed:
  • Yazhao Lv
  • Riquan Zhang
  • Weihua Zhao
  • Jicai Liu

Abstract

Partial linear single-index model (PLSIM) is a flexible and applicable model when investigating the underlying relationship between the response and the multivariate covariates. Most previous studies on PLSIM concentrated on mean regression, based on least square or likelihood approach. In contrast to this method, in this paper, we propose minimizing average check loss estimation (MACLE) procedure to conduct quantile regression of PLSIM. We construct an initial consistent quantile regression estimator of the parametric part base multi-dimensional kernels, and further promote the estimation efficiency to the optimal rate. We discuss the optimal bandwidth selection method and establish the asymptotic normality of the proposed MACLE estimators. Furthermore, we consider an adaptive lasso penalized variable selection method and establish its oracle property. Simulation studies with various distributed error and a real data analysis are conducted to show the promise of our proposed methods. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Suggested Citation

  • Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
  • Handle: RePEc:spr:aistmt:v:67:y:2015:i:2:p:375-409
    DOI: 10.1007/s10463-014-0457-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-014-0457-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-014-0457-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    3. Chaudhuri, Probal, 1991. "Global nonparametric estimation of conditional quantile functions and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 246-269, November.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    5. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    8. Wu, Tracy Z. & Yu, Keming & Yu, Yan, 2010. "Single-index quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1607-1621, August.
    9. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    10. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    11. Kong, Efang & Xia, Yingcun, 2012. "A Single-Index Quantile Regression Model And Its Estimation," Econometric Theory, Cambridge University Press, vol. 28(4), pages 730-768, August.
    12. Fan, Yan & Härdle, Wolfgang Karl & Wang, Weining & Zhu, Lixing, 2013. "Composite quantile regression for the single-index model," SFB 649 Discussion Papers 2013-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    14. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyong Chen & Jianbao Chen, 2022. "Bayesian analysis of partially linear, single-index, spatial autoregressive models," Computational Statistics, Springer, vol. 37(1), pages 327-353, March.
    2. Hong-Xia Xu & Guo-Liang Fan & Zhen-Long Chen & Jiang-Feng Wang, 2018. "Weighted quantile regression and testing for varying-coefficient models with randomly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 565-588, October.
    3. Suli Cheng & Jianbao Chen, 2021. "Estimation of partially linear single-index spatial autoregressive model," Statistical Papers, Springer, vol. 62(1), pages 495-531, February.
    4. Ke Wang & Dehui Wang, 2024. "Estimation for partially linear single-index spatial autoregressive model with covariate measurement errors," Statistical Papers, Springer, vol. 65(7), pages 4201-4241, September.
    5. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    6. Myeonggyun Lee & Andrea B. Troxel & Mengling Liu, 2024. "Partial-linear single-index transformation models with censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 701-720, October.
    7. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    8. Zou, Yuye & Wu, Chengxin, 2023. "Composite quantile regression analysis of survival data with missing cause-of-failure information and its application to breast cancer clinical trial," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    9. Hong-Xia Xu & Zhen-Long Chen & Jiang-Feng Wang & Guo-Liang Fan, 2019. "Quantile regression and variable selection for partially linear model with randomly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1137-1160, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    2. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    3. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    4. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
    5. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    6. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    7. Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2017. "Quantile regression and variable selection of single-index coefficient model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 761-789, August.
    8. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    9. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    10. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    11. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    12. Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
    13. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    14. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    15. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    16. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    17. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    18. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    19. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    20. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:67:y:2015:i:2:p:375-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.