IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v17y2011i4p725-751.html
   My bibliography  Save this article

Tourism Destination Competitiveness: Second Thoughts on the World Economic Forum Reports

Author

Listed:
  • Josef A. Mazanec

    (Institute for Tourism and Leisure Studies, Vienna University of Economics and Business, Augasse 2–6, A-1090 Vienna, Austria)

  • Amata Ring

    (BWZ, University of Vienna, Bruenner Strasse 72, A-1210 Vienna, Austria)

Abstract

The Travel and Tourism Competitiveness Reports of the World Economic Forum elaborate the Travel and Tourism Competitiveness Index (TTCI) as an overall measure of destination competitiveness for 130 economies worldwide. From a tourism management point of view, a measure such as the TTCI is expected to be instrumental in explaining and predicting the tourism performance of receiving countries. This study explores several ways to transform the TTCI into a formative structural model. Partial least squares path modelling, PLS regression, mixture modelling and non-linear covariance-based structural equation modelling are applied to examine the TTCI's predictive power. The analysis probes possible measures for improvement. The destination countries may be subject to unobserved heterogeneity with regard to how the various constituents of competitiveness act on tourism performance. Interaction phenomena seem to prohibit a simple cause–effect pattern and non-linear relationships show encouraging results.

Suggested Citation

  • Josef A. Mazanec & Amata Ring, 2011. "Tourism Destination Competitiveness: Second Thoughts on the World Economic Forum Reports," Tourism Economics, , vol. 17(4), pages 725-751, August.
  • Handle: RePEc:sae:toueco:v:17:y:2011:i:4:p:725-751
    DOI: 10.5367/te.2011.0065
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5367/te.2011.0065
    Download Restriction: no

    File URL: https://libkey.io/10.5367/te.2011.0065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Esposito Vinzi, Vincenzo & Ringle, Christian M. & Squillacciotti, Silvia & Trinchera, Laura, 2007. "Capturing and Treating Unobserved Heterogeneity by Response Based Segmentation in PLS Path Modeling. A Comparison of Alternative Methods by Computational Experiments," ESSEC Working Papers DR 07019, ESSEC Research Center, ESSEC Business School.
    2. Carsten Hahn & Michael D. Johnson & Andreas Herrmann & Frank Huber, 2002. "Capturing Customer Heterogeneity Using A Finite Mixture Pls Approach," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 243-269, July.
    3. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    4. Hildebrandt, Lutz & Temme, Dirk, 2006. "Formative measurement models in covariance structure analysis: Specification and identification," SFB 649 Discussion Papers 2006-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2006-083 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ringle, Christian M. & Sarstedt, Marko & Schlittgen, Rainer & Taylor, Charles R., 2013. "PLS path modeling and evolutionary segmentation," Journal of Business Research, Elsevier, vol. 66(9), pages 1318-1324.
    2. Stéphanie Bougeard & Hervé Abdi & Gilbert Saporta & Ndèye Niang, 2018. "Clusterwise analysis for multiblock component methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 285-313, June.
    3. Ratzmann, Martin & Gudergan, Siegfried P. & Bouncken, Ricarda, 2016. "Capturing heterogeneity and PLS-SEM prediction ability: Alliance governance and innovation," Journal of Business Research, Elsevier, vol. 69(10), pages 4593-4603.
    4. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    5. Dafna Kariv & Carlo Giglio & Vincenzo Corvello, 2025. "Fostering Entrepreneurial intentions: exploring the interplay of education and endogenous factors," International Entrepreneurship and Management Journal, Springer, vol. 21(1), pages 1-27, December.
    6. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    7. Sarstedt, Marko & Wilczynski, Petra & Melewar, T.C., 2013. "Measuring reputation in global markets—A comparison of reputation measures’ convergent and criterion validities," Journal of World Business, Elsevier, vol. 48(3), pages 329-339.
    8. Kim, Suwon, 2018. "Snack-media platform market segmentation based on user heterogeneity: A Q-methodology approach," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190357, International Telecommunications Society (ITS).
    9. Sarstedt, Marko & Ringle, Christian M. & Smith, Donna & Reams, Russell & Hair, Joseph F., 2014. "Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers," Journal of Family Business Strategy, Elsevier, vol. 5(1), pages 105-115.
    10. Brusch, Ines & Rappel, Nina, 2020. "Exploring the acceptance of instant shopping – An empirical analysis of the determinants of user intention," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    11. Valentin Niță & Ioana Guțu, 2023. "The Role of Leadership and Digital Transformation in Higher Education Students’ Work Engagement," IJERPH, MDPI, vol. 20(6), pages 1-32, March.
    12. Marko Sarstedt & Christian M Ringle & Jun-Hwa Cheah & Hiram Ting & Ovidiu I Moisescu & Lacramioara Radomir, 2020. "Structural model robustness checks in PLS-SEM," Tourism Economics, , vol. 26(4), pages 531-554, June.
    13. Sönke Albers & Lutz Hildebrandt, 2006. "Methodische Probleme bei der Erfolgsfaktorenforschung — Messfehler, formative versus reflektive Indikatoren und die Wahl des Strukturgleichungs-Modells," Schmalenbach Journal of Business Research, Springer, vol. 58(1), pages 2-33, February.
    14. Marko Sarstedt & Jun-Hwa Cheah, 2019. "Partial least squares structural equation modeling using SmartPLS: a software review," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 196-202, September.
    15. Maria Nareklishvili & Nicholas Polson & Vadim Sokolov, 2022. "Feature Selection for Personalized Policy Analysis," Papers 2301.00251, arXiv.org, revised Jul 2023.
    16. Joti kumari & Jai Kumar, 2023. "Influence of motivation on teachers’ job performance," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    17. Schlägel, Christopher & Sarstedt, Marko, 2016. "Assessing the measurement invariance of the four-dimensional cultural intelligence scale across countries: A composite model approach," European Management Journal, Elsevier, vol. 34(6), pages 633-649.
    18. Becker, Jan-Michael & Ismail, Ida Rosnita, 2016. "Accounting for sampling weights in PLS path modeling: Simulations and empirical examples," European Management Journal, Elsevier, vol. 34(6), pages 606-617.
    19. Esposito Vinzi, Vincenzo & Ringle, Christian M. & Squillacciotti, Silvia & Trinchera, Laura, 2007. "Capturing and Treating Unobserved Heterogeneity by Response Based Segmentation in PLS Path Modeling. A Comparison of Alternative Methods by Computational Experiments," ESSEC Working Papers DR 07019, ESSEC Research Center, ESSEC Business School.
    20. V. Esposito Vinzi & L. Trinchera & S. Squillacciotti & M. Tenenhaus, 2008. "REBUS‐PLS: A response‐based procedure for detecting unit segments in PLS path modelling," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 439-458, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:17:y:2011:i:4:p:725-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.