IDEAS home Printed from https://ideas.repec.org/a/sae/miceco/v3y2015i1p1-12.html
   My bibliography  Save this article

Sharing the Cost of a Path

Author

Listed:
  • Andreas Darmann
  • Christian Klamler
  • Ulrich Pferschy

Abstract

In recent years, many authors have analyzed fair division aspects in problems containing network structures. Frequently, the connection of all vertices of the network, that is, a minimum cost spanning tree, and the sharing of its cost was considered. In this article, we study the fair division of costs of connecting two designated vertices by a path. Specifically, we will introduce two cost-sharing rules that provide a division of the costs of forming a shortest path. One of the cost-sharing rules will include aspects from non-cooperative extensive form games in the sense that selfish and individually rational behaviour without agreement between the agents in a sequential structure is taken into account for the determination of the cooperative solution. The other cost-sharing rule is based on an alternating structure along the shortest path. Axiomatic characterizations of the two cost-sharing rules are provided.

Suggested Citation

  • Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2015. "Sharing the Cost of a Path," Studies in Microeconomics, , vol. 3(1), pages 1-12, June.
  • Handle: RePEc:sae:miceco:v:3:y:2015:i:1:p:1-12
    DOI: 10.1177/2321022215577551
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2321022215577551
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2321022215577551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chun, Youngsub, 1988. "The proportional solution for rights problems," Mathematical Social Sciences, Elsevier, vol. 15(3), pages 231-246, June.
    2. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    3. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
    4. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    5. Andreas Darmann & Christian Klamler, 2014. "Knapsack cost sharing," Review of Economic Design, Springer;Society for Economic Design, vol. 18(3), pages 219-241, September.
    6. Ruben Juarez & Rajnish Kumar, 2013. "Implementing efficient graphs in connection networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 359-403, October.
    7. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    8. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    9. Mark Voorneveld & Sofia Grahn, 2002. "Cost allocation in shortest path games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(2), pages 323-340, November.
    10. Grahn, Sofia, 2001. "Core and Bargaining Set of Shortest Path Games," Working Paper Series 2001:3, Uppsala University, Department of Economics.
    11. Vito Fragnelli & Ignacio García-Jurado & Luciano Méndez-Naya, 2000. "On shortest path games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 251-264, November.
    12. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    13. Grahn, S., 2001. "Core and Bargaining Set of Shortest Path Games," Papers 2001:03, Uppsala - Working Paper Series.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    2. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    3. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
    4. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    5. Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2024. "Stable and weakly additive cost sharing in shortest path problems," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    6. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    7. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    8. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    9. Hougaard, Jens Leth & Tvede, Mich, 2022. "Trouble comes in threes: Core stability in minimum cost connection networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 319-324.
    10. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    11. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
    12. Julio R. Fernández & Inés Gallego & Andrés Jiménez-Losada & Manuel Ordóñez, 2022. "Cost-allocation problems for fuzzy agents in a fixed-tree network," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 531-551, December.
    13. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    14. Rosenthal, Edward C., 2013. "Shortest path games," European Journal of Operational Research, Elsevier, vol. 224(1), pages 132-140.
    15. Rosenthal, Edward C., 2017. "A cooperative game approach to cost allocation in a rapid-transit network," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 64-77.
    16. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    17. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    18. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
    19. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    20. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:miceco:v:3:y:2015:i:1:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.