IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v44y2024i3p252-268.html
   My bibliography  Save this article

Preferences for Genetic Testing to Predict the Risk of Developing Hereditary Cancer: A Systematic Review of Discrete Choice Experiments

Author

Listed:
  • N. Morrish

    (Public Health Economics Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK)

  • T. Snowsill

    (Health Economics Group, Health and Community Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK)

  • S. Dodman

    (University of Exeter, Exeter, UK)

  • A. Medina-Lara

    (Public Health Economics Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK)

Abstract

Background Understanding service user preferences is key to effective health care decision making and efficient resource allocation. It is of particular importance in the management of high-risk patients in whom predictive genetic testing can alter health outcomes. Purpose This review aims to identify the relative importance and willingness to pay for attributes of genetic testing in hereditary cancer syndromes. Data Sources Searches were conducted in Medline, Embase, PsycINFO, HMIC, Web of Science, and EconLit using discrete choice experiment (DCE) terms combined with terms related to hereditary cancer syndromes, malignancy synonyms, and genetic testing. Study Selection Following independent screening by 3 reviewers, 7 studies fulfilled the inclusion criteria, being a DCE investigating patient or public preferences related to predictive genetic testing for hereditary cancer syndromes. Data Extraction Extracted data included study and respondent characteristics, DCE attributes and levels, methods of data analysis and interpretation, and key study findings. Data Synthesis Studies covered colorectal, breast, and ovarian cancer syndromes. Results were summarized in a narrative synthesis and the quality assessed using the Lancsar and Louviere framework. Limitations This review focuses only on DCE design and testing for hereditary cancer syndromes rather than other complex diseases. Challenges also arose from heterogeneity in attributes and levels. Conclusions Test effectiveness and detection rates were consistently important to respondents and thus should be prioritized by policy makers. Accuracy, cost, and wait time, while also important, showed variation between studies, although overall reduction in cost may improve uptake. Patients and the public would be willing to pay for improved detection and clinician over insurance provider involvement. Future studies should seek to contextualize findings by considering the impact of sociodemographic characteristics, health system coverage, and insurance policies on preferences. Highlights Test effectiveness and detection rates are consistently important to respondents in genetic testing for hereditary cancer syndromes. Reducing the cost of genetic testing for hereditary cancer syndromes may improve uptake. Individuals are most willing to pay for a test that improves detection rates, identifies multiple cancers, and for which results are shared with a doctor rather than with an insurance provider.

Suggested Citation

  • N. Morrish & T. Snowsill & S. Dodman & A. Medina-Lara, 2024. "Preferences for Genetic Testing to Predict the Risk of Developing Hereditary Cancer: A Systematic Review of Discrete Choice Experiments," Medical Decision Making, , vol. 44(3), pages 252-268, April.
  • Handle: RePEc:sae:medema:v:44:y:2024:i:3:p:252-268
    DOI: 10.1177/0272989X241227425
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X241227425
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X241227425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    2. Daly, Andrew & Dekker, Thijs & Hess, Stephane, 2016. "Dummy coding vs effects coding for categorical variables: Clarifications and extensions," Journal of choice modelling, Elsevier, vol. 21(C), pages 36-41.
    3. Sara J. Knight & Ateesha F. Mohamed & Deborah A. Marshall & Uri Ladabaum & Kathryn A. Phillips & Judith M. E. Walsh, 2015. "Value of Genetic Testing for Hereditary Colorectal Cancer in a Probability-Based US Online Sample," Medical Decision Making, , vol. 35(6), pages 734-744, August.
    4. Emily Lancsar & Elizabeth Savage, 2004. "Deriving welfare measures from discrete choice experiments: inconsistency between current methods and random utility and welfare theory," Health Economics, John Wiley & Sons, Ltd., vol. 13(9), pages 901-907, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semra Ozdemir & Jia Jia Lee & Isha Chaudhry & Remee Rose Quintana Ocampo, 2022. "A Systematic Review of Discrete Choice Experiments and Conjoint Analysis on Genetic Testing," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 15(1), pages 39-54, January.
    2. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    3. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    4. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    5. Santos Urbina & Sofía Villatoro & Jesús Salinas, 2021. "Self-Regulated Learning and Technology-Enhanced Learning Environments in Higher Education: A Scoping Review," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    6. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    7. Nadine Desrochers & Adèle Paul‐Hus & Jen Pecoskie, 2017. "Five decades of gratitude: A meta‐synthesis of acknowledgments research," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2821-2833, December.
    8. Maryono, Maryono & Killoes, Aditya Marendra & Adhikari, Rajendra & Abdul Aziz, Ammar, 2024. "Agriculture development through multi-stakeholder partnerships in developing countries: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    9. Alene Sze Jing Yong & Yi Heng Lim & Mark Wing Loong Cheong & Ednin Hamzah & Siew Li Teoh, 2022. "Willingness-to-pay for cancer treatment and outcome: a systematic review," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 1037-1057, August.
    10. Xue-Ying Xu & Hong Kong & Rui-Xiang Song & Yu-Han Zhai & Xiao-Fei Wu & Wen-Si Ai & Hong-Bo Liu, 2014. "The Effectiveness of Noninvasive Biomarkers to Predict Hepatitis B-Related Significant Fibrosis and Cirrhosis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-16, June.
    11. Vicente Miñana-Signes & Manuel Monfort-Pañego & Javier Valiente, 2021. "Teaching Back Health in the School Setting: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    12. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    13. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    14. Caloffi, Annalisa & Colovic, Ana & Rizzoli, Valentina & Rossi, Federica, 2023. "Innovation intermediaries' types and functions: A computational analysis of the literature," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    15. García-Poole, Chloe & Byrne, Sonia & Rodrigo, María José, 2019. "How do communities intervene with adolescents at psychosocial risk? A systematic review of positive development programs," Children and Youth Services Review, Elsevier, vol. 99(C), pages 194-209.
    16. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Qing Ye & Bao-Xin Qian & Wei-Li Yin & Feng-Mei Wang & Tao Han, 2016. "Association between the HFE C282Y, H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis o," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    18. Bishal Mohindru & David Turner & Tracey Sach & Diana Bilton & Siobhan Carr & Olga Archangelidi & Arjun Bhadhuri & Jennifer A. Whitty, 2020. "Health State Utility Data in Cystic Fibrosis: A Systematic Review," PharmacoEconomics - Open, Springer, vol. 4(1), pages 13-25, March.
    19. Subramaniam, Mega & Pang, Natalie & Morehouse, Shandra & Asgarali-Hoffman, S. Nisa, 2020. "Examining vulnerability in youth digital information practices scholarship: What are we missing or exhausting?," Children and Youth Services Review, Elsevier, vol. 116(C).
    20. Neal R. Haddaway & Matthew J. Page & Chris C. Pritchard & Luke A. McGuinness, 2022. "PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis," Campbell Systematic Reviews, John Wiley & Sons, vol. 18(2), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:44:y:2024:i:3:p:252-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.