IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i2p407-428.html
   My bibliography  Save this article

Analysis of vibrations in a diesel engine produced by Jatropha biodiesel using heterogeneous catalyst

Author

Listed:
  • Aparna Singh
  • Akhilesh Kumar Choudhary
  • Shailendra Sinha
  • Hitesh Panchal
  • Kishor Kumar Sadasivuni

Abstract

Extensive consumption of fossil fuel has contributed to the worldwide decline of its reserves and detrimental effect on the environment. Therefore, it is essential to explore alternative option of fuel for diesel engine. The main objective of this research article is to optimize vibrations in a single-cylinder variable compression ratio diesel engine driven by Jatropha biodiesel blend. The heterogeneous catalyst (calcium oxide) is used to manufacture of biodiesel from Jatropha curcas oil by a process of transesterification. The optimization technique (Response Surface Methodology) has been employed to optimize root mean square acceleration of vibration by taking load, compression ratio (CR), and fuel injection pressure (FIP) as engine input parameters. Experiments were designed according to central composite design. The amplitude of the frequency domain signals is determined using Fast Fourier Transform and the influence of input parameters has been investigated in the frequency domain analysis of the vibration signatures. The adequacy and significance of the models have been checked by p -value and F value tests. Regression coefficients Adj. R 2 , R 2 , Pred. R 2 were also found in acceptable range. The experimental outcome reveals that biodiesel yield of 81.6% was obtained at methanol-to-oil molar ratio of 12:1, reaction temperature of 65°C, reaction time of 3 h, and catalyst concentration of 5 wt%. Simultaneously, the model obtained a series of solutions based on the desirability criteria and proposed optimum setting of engine input parameters at a load of 2.59 kg, 17.94 CR, and 268.76 bar FIP for B30 blend. B30 blend generated root mean square acceleration of 4.46 m/s 2 at above optimized conditions. A validation trial was conducted and the percentage of error for root mean square acceleration was found to be 2.3356% and 1.3039%, respectively, for B0 and B30 blend.

Suggested Citation

  • Aparna Singh & Akhilesh Kumar Choudhary & Shailendra Sinha & Hitesh Panchal & Kishor Kumar Sadasivuni, 2023. "Analysis of vibrations in a diesel engine produced by Jatropha biodiesel using heterogeneous catalyst," Energy & Environment, , vol. 34(2), pages 407-428, March.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:2:p:407-428
    DOI: 10.1177/0958305X211063935
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211063935
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211063935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chiatti, Giancarlo & Chiavola, Ornella & Palmieri, Fulvio, 2017. "Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends," Applied Energy, Elsevier, vol. 185(P1), pages 664-670.
    2. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    3. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    4. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    5. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    6. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    7. Lau, Pak-Chung & Kwong, Tsz-Lung & Yung, Ka-Fu, 2022. "Manganese glycerolate catalyzed simultaneous esterification and transesterification: The kinetic and mechanistic study, and application in biodiesel and bio-lubricants synthesis," Renewable Energy, Elsevier, vol. 189(C), pages 549-558.
    8. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    9. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    10. Lam, Man Kee & Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2009. "Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1456-1464, August.
    11. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    12. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    13. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    14. Tiantian Yang & Tie Wang & Guoxing Li & Jinhong Shi & Xiuquan Sun, 2018. "Vibration Characteristics of Compression Ignition Engines Fueled with Blended Petro-Diesel and Fischer-Tropsch Diesel Fuel from Coal Fuels," Energies, MDPI, vol. 11(8), pages 1-15, August.
    15. De Corato, Ugo & De Bari, Isabella & Viola, Egidio & Pugliese, Massimo, 2018. "Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 326-346.
    16. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    17. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    20. Palmer, Jacob D. & Brigham, Christopher J., 2016. "Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 922-928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:2:p:407-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.